Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381661851> ?p ?o ?g. }
- W4381661851 endingPage "108425" @default.
- W4381661851 startingPage "108425" @default.
- W4381661851 abstract "Crop modeling is an effective tool for simulating crop growth under various agricultural water and salinity management practices. However, most crop models fail to describe the root dynamics in response to soil stresses adequately. To address this issue, field experiments were conducted by planting sunflowers in saline soils. Three machine learning (ML) models of random forest (RF), gaussian process regression (GPR), and extreme gradient boosting (XGBoost) were initially introduced for predicting root length density (RLD). Then, by coupling with a crop model SWAP, the soil salt content (SSC), soil water content (SWC), and crop growth indicators of leaf area index (LAI) and dry matter (DM) were simulated. Results show that RF and XGBoost models could predict RLD more accurately than the GPR model, with root mean square error (RMSE) lower than 0.473 cm cm-3. Compared to using a typical cubic polynomial function (CPF) of RLD in the SWAP model, similar SWC and SSC simulation results were obtained based on the ML models. However, for the crop growth simulation, the performances of ML models were significantly better than the CPF. Especially for LAI simulation in the high salinity fields, the relative root mean square error (RRMSE) in the RF model was 0.222–0.282 lower than in the CPF. Moreover, compared to the XGBoost model of RLD, more accurate and stable simulation results of SWC, SSC, and LAI were obtained based on the RF model. These results illustrate that ML models, especially the RF model, can be used to quantify RLD dynamics and improve crop modeling performances." @default.
- W4381661851 created "2023-06-23" @default.
- W4381661851 creator A5001513473 @default.
- W4381661851 creator A5007456376 @default.
- W4381661851 creator A5046716720 @default.
- W4381661851 creator A5061220632 @default.
- W4381661851 date "2023-09-01" @default.
- W4381661851 modified "2023-10-04" @default.
- W4381661851 title "Improving crop modeling in saline soils by predicting root length density dynamics with machine learning algorithms" @default.
- W4381661851 cites W1870940040 @default.
- W4381661851 cites W1985264945 @default.
- W4381661851 cites W2000755575 @default.
- W4381661851 cites W2011907823 @default.
- W4381661851 cites W2013087770 @default.
- W4381661851 cites W2019932413 @default.
- W4381661851 cites W2020411470 @default.
- W4381661851 cites W2024574915 @default.
- W4381661851 cites W2035429245 @default.
- W4381661851 cites W2043003992 @default.
- W4381661851 cites W2048568378 @default.
- W4381661851 cites W2087844189 @default.
- W4381661851 cites W2088794999 @default.
- W4381661851 cites W2104759034 @default.
- W4381661851 cites W2152200181 @default.
- W4381661851 cites W2162604832 @default.
- W4381661851 cites W2201713963 @default.
- W4381661851 cites W2324454632 @default.
- W4381661851 cites W2344071981 @default.
- W4381661851 cites W2413379912 @default.
- W4381661851 cites W2430174362 @default.
- W4381661851 cites W2465191219 @default.
- W4381661851 cites W2474453159 @default.
- W4381661851 cites W2753326840 @default.
- W4381661851 cites W2908881949 @default.
- W4381661851 cites W2911964244 @default.
- W4381661851 cites W2939756633 @default.
- W4381661851 cites W3036708439 @default.
- W4381661851 cites W3102476541 @default.
- W4381661851 cites W3110295943 @default.
- W4381661851 cites W3125514172 @default.
- W4381661851 cites W3165074537 @default.
- W4381661851 cites W3169469595 @default.
- W4381661851 cites W3174659913 @default.
- W4381661851 cites W3212566395 @default.
- W4381661851 cites W3214723814 @default.
- W4381661851 cites W4214902424 @default.
- W4381661851 cites W4225999415 @default.
- W4381661851 cites W4312197467 @default.
- W4381661851 cites W59484141 @default.
- W4381661851 doi "https://doi.org/10.1016/j.agwat.2023.108425" @default.
- W4381661851 hasPublicationYear "2023" @default.
- W4381661851 type Work @default.
- W4381661851 citedByCount "0" @default.
- W4381661851 crossrefType "journal-article" @default.
- W4381661851 hasAuthorship W4381661851A5001513473 @default.
- W4381661851 hasAuthorship W4381661851A5007456376 @default.
- W4381661851 hasAuthorship W4381661851A5046716720 @default.
- W4381661851 hasAuthorship W4381661851A5061220632 @default.
- W4381661851 hasBestOaLocation W43816618511 @default.
- W4381661851 hasConcept C105795698 @default.
- W4381661851 hasConcept C11413529 @default.
- W4381661851 hasConcept C126343540 @default.
- W4381661851 hasConcept C139945424 @default.
- W4381661851 hasConcept C141650431 @default.
- W4381661851 hasConcept C159390177 @default.
- W4381661851 hasConcept C159750122 @default.
- W4381661851 hasConcept C168741863 @default.
- W4381661851 hasConcept C25989453 @default.
- W4381661851 hasConcept C33923547 @default.
- W4381661851 hasConcept C39432304 @default.
- W4381661851 hasConcept C6557445 @default.
- W4381661851 hasConcept C81692654 @default.
- W4381661851 hasConcept C86803240 @default.
- W4381661851 hasConceptScore W4381661851C105795698 @default.
- W4381661851 hasConceptScore W4381661851C11413529 @default.
- W4381661851 hasConceptScore W4381661851C126343540 @default.
- W4381661851 hasConceptScore W4381661851C139945424 @default.
- W4381661851 hasConceptScore W4381661851C141650431 @default.
- W4381661851 hasConceptScore W4381661851C159390177 @default.
- W4381661851 hasConceptScore W4381661851C159750122 @default.
- W4381661851 hasConceptScore W4381661851C168741863 @default.
- W4381661851 hasConceptScore W4381661851C25989453 @default.
- W4381661851 hasConceptScore W4381661851C33923547 @default.
- W4381661851 hasConceptScore W4381661851C39432304 @default.
- W4381661851 hasConceptScore W4381661851C6557445 @default.
- W4381661851 hasConceptScore W4381661851C81692654 @default.
- W4381661851 hasConceptScore W4381661851C86803240 @default.
- W4381661851 hasFunder F4320321001 @default.
- W4381661851 hasFunder F4320321543 @default.
- W4381661851 hasFunder F4320335777 @default.
- W4381661851 hasFunder F4320335787 @default.
- W4381661851 hasLocation W43816618511 @default.
- W4381661851 hasOpenAccess W4381661851 @default.
- W4381661851 hasPrimaryLocation W43816618511 @default.
- W4381661851 hasRelatedWork W1818205498 @default.
- W4381661851 hasRelatedWork W1984649559 @default.
- W4381661851 hasRelatedWork W2127331410 @default.
- W4381661851 hasRelatedWork W2349531112 @default.