Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381662903> ?p ?o ?g. }
- W4381662903 endingPage "333" @default.
- W4381662903 startingPage "333" @default.
- W4381662903 abstract "The lithium iron phosphate (LiFePO4) blade battery is a long, rectangular-shaped cell that can be directly integrated into battery pack systems. It enhances volumetric power density, significantly reduces costs, and is widely utilized in electric vehicles. However, the flat open circuit voltage and significant polarization differences under wide operational temperatures are challenging for accurate voltage modeling of battery management systems (BMSs). In particular, inaccurate state of charge (SOC) estimation may cause overcharging and over-discharging risks. To accurately perceive the SOC of LiFePO4 blade batteries, a SOC estimation method based on the backpropagation neural network-extended Kalman filter (BPNN-EKF) algorithm is proposed. BPNN is a neural network model that utilizes the backpropagation algorithm to update model parameters, while EKF is an optimal estimation algorithm. Firstly, dynamic working condition tests, including the New European Driving Cycle (NEDC) and high-speed working (HSW) condition tests, are conducted under a wide temperature range (−25–43 °C). HSW conditions refer to a simulated operating condition that mimics the driving of an electric vehicle on a highway. The minimum voltage of the battery system is used as the output for training the BPNN model. We derive the Kalman gain by combining the BPNN output voltage. Additionally, the EKF algorithm is employed to correct the SOC value using voltage error information. Concerning long SOC calculation intervals, capacity errors, initial SOC errors, and current and voltage sampling errors, the maximum SOC estimation RMSE is 3.98% at −20 °C NEDC, 3.62% at 10 °C NEDC, and 1.68% at 35 °C HSW. The proposed algorithm can be applied to different temperatures and operations, demonstrating high robustness. This BPNN-EKF algorithm has the potential to be embedded in electric vehicle BMS systems for practical applications." @default.
- W4381662903 created "2023-06-23" @default.
- W4381662903 creator A5001533541 @default.
- W4381662903 creator A5002510823 @default.
- W4381662903 creator A5006111469 @default.
- W4381662903 creator A5040847878 @default.
- W4381662903 creator A5047958286 @default.
- W4381662903 creator A5050445027 @default.
- W4381662903 creator A5083736034 @default.
- W4381662903 creator A5086646409 @default.
- W4381662903 creator A5090385327 @default.
- W4381662903 date "2023-06-20" @default.
- W4381662903 modified "2023-10-13" @default.
- W4381662903 title "High-Precision and Robust SOC Estimation of LiFePO4 Blade Batteries Based on the BPNN-EKF Algorithm" @default.
- W4381662903 cites W2003624988 @default.
- W4381662903 cites W2066563827 @default.
- W4381662903 cites W2078211541 @default.
- W4381662903 cites W2113449668 @default.
- W4381662903 cites W2125884948 @default.
- W4381662903 cites W2147428031 @default.
- W4381662903 cites W2342992916 @default.
- W4381662903 cites W2776904577 @default.
- W4381662903 cites W2917669645 @default.
- W4381662903 cites W2968677983 @default.
- W4381662903 cites W2973538758 @default.
- W4381662903 cites W2981577396 @default.
- W4381662903 cites W3012958665 @default.
- W4381662903 cites W3018139049 @default.
- W4381662903 cites W3042713179 @default.
- W4381662903 cites W3080265412 @default.
- W4381662903 cites W3106603010 @default.
- W4381662903 cites W3108279751 @default.
- W4381662903 cites W3199879965 @default.
- W4381662903 cites W3205125745 @default.
- W4381662903 cites W4220717235 @default.
- W4381662903 cites W4220779420 @default.
- W4381662903 cites W4281261134 @default.
- W4381662903 cites W4286436588 @default.
- W4381662903 cites W4295125731 @default.
- W4381662903 cites W4296992998 @default.
- W4381662903 cites W4313531345 @default.
- W4381662903 cites W4316877855 @default.
- W4381662903 cites W4317528656 @default.
- W4381662903 cites W4319440111 @default.
- W4381662903 cites W4319870032 @default.
- W4381662903 cites W4327662979 @default.
- W4381662903 cites W4379046865 @default.
- W4381662903 doi "https://doi.org/10.3390/batteries9060333" @default.
- W4381662903 hasPublicationYear "2023" @default.
- W4381662903 type Work @default.
- W4381662903 citedByCount "2" @default.
- W4381662903 countsByYear W43816629032023 @default.
- W4381662903 crossrefType "journal-article" @default.
- W4381662903 hasAuthorship W4381662903A5001533541 @default.
- W4381662903 hasAuthorship W4381662903A5002510823 @default.
- W4381662903 hasAuthorship W4381662903A5006111469 @default.
- W4381662903 hasAuthorship W4381662903A5040847878 @default.
- W4381662903 hasAuthorship W4381662903A5047958286 @default.
- W4381662903 hasAuthorship W4381662903A5050445027 @default.
- W4381662903 hasAuthorship W4381662903A5083736034 @default.
- W4381662903 hasAuthorship W4381662903A5086646409 @default.
- W4381662903 hasAuthorship W4381662903A5090385327 @default.
- W4381662903 hasBestOaLocation W43816629031 @default.
- W4381662903 hasConcept C105795698 @default.
- W4381662903 hasConcept C11413529 @default.
- W4381662903 hasConcept C119599485 @default.
- W4381662903 hasConcept C121332964 @default.
- W4381662903 hasConcept C127413603 @default.
- W4381662903 hasConcept C139945424 @default.
- W4381662903 hasConcept C154945302 @default.
- W4381662903 hasConcept C155032097 @default.
- W4381662903 hasConcept C157286648 @default.
- W4381662903 hasConcept C163258240 @default.
- W4381662903 hasConcept C165801399 @default.
- W4381662903 hasConcept C206833254 @default.
- W4381662903 hasConcept C2775924081 @default.
- W4381662903 hasConcept C2776582896 @default.
- W4381662903 hasConcept C33923547 @default.
- W4381662903 hasConcept C41008148 @default.
- W4381662903 hasConcept C47446073 @default.
- W4381662903 hasConcept C50644808 @default.
- W4381662903 hasConcept C555008776 @default.
- W4381662903 hasConcept C62520636 @default.
- W4381662903 hasConceptScore W4381662903C105795698 @default.
- W4381662903 hasConceptScore W4381662903C11413529 @default.
- W4381662903 hasConceptScore W4381662903C119599485 @default.
- W4381662903 hasConceptScore W4381662903C121332964 @default.
- W4381662903 hasConceptScore W4381662903C127413603 @default.
- W4381662903 hasConceptScore W4381662903C139945424 @default.
- W4381662903 hasConceptScore W4381662903C154945302 @default.
- W4381662903 hasConceptScore W4381662903C155032097 @default.
- W4381662903 hasConceptScore W4381662903C157286648 @default.
- W4381662903 hasConceptScore W4381662903C163258240 @default.
- W4381662903 hasConceptScore W4381662903C165801399 @default.
- W4381662903 hasConceptScore W4381662903C206833254 @default.
- W4381662903 hasConceptScore W4381662903C2775924081 @default.
- W4381662903 hasConceptScore W4381662903C2776582896 @default.
- W4381662903 hasConceptScore W4381662903C33923547 @default.