Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381663275> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4381663275 abstract "This study explores various machine learning and deep learning applications on financial data modelling, analysis and prediction processes. The main focus is to test the prediction accuracy of cryptocurrency hourly returns and to explore, analyse and showcase the various interpretability features of the ML models. The study considers the six most dominant cryptocurrencies in the market: Bitcoin, Ethereum, Binance Coin, Cardano, Ripple and Litecoin. The experimental settings explore the formation of the corresponding datasets from technical, fundamental and statistical analysis. The paper compares various existing and enhanced algorithms and explains their results, features and limitations. The algorithms include decision trees, random forests and ensemble methods, SVM, neural networks, single and multiple features N-BEATS, ARIMA and Google AutoML. From experimental results, we see that predicting cryptocurrency returns is possible. However, prediction algorithms may not generalise for different assets and markets over long periods. There is no clear winner that satisfies all requirements, and the main choice of algorithm will be tied to the user needs and provided resources." @default.
- W4381663275 created "2023-06-23" @default.
- W4381663275 creator A5060587687 @default.
- W4381663275 creator A5063691114 @default.
- W4381663275 creator A5076869058 @default.
- W4381663275 date "2023-06-21" @default.
- W4381663275 modified "2023-09-25" @default.
- W4381663275 title "Evaluating interpretable machine learning predictions for cryptocurrencies" @default.
- W4381663275 cites W2041018175 @default.
- W4381663275 cites W2144283942 @default.
- W4381663275 cites W2910401125 @default.
- W4381663275 cites W2949743585 @default.
- W4381663275 cites W2962752580 @default.
- W4381663275 cites W2963507686 @default.
- W4381663275 cites W2966231643 @default.
- W4381663275 cites W3126443786 @default.
- W4381663275 cites W3135178882 @default.
- W4381663275 cites W3137262131 @default.
- W4381663275 cites W3173725123 @default.
- W4381663275 cites W3208323717 @default.
- W4381663275 cites W3212514998 @default.
- W4381663275 cites W3213128436 @default.
- W4381663275 cites W4210360375 @default.
- W4381663275 cites W4226471255 @default.
- W4381663275 cites W4245119036 @default.
- W4381663275 cites W4280546657 @default.
- W4381663275 doi "https://doi.org/10.1002/isaf.1538" @default.
- W4381663275 hasPublicationYear "2023" @default.
- W4381663275 type Work @default.
- W4381663275 citedByCount "0" @default.
- W4381663275 crossrefType "journal-article" @default.
- W4381663275 hasAuthorship W4381663275A5060587687 @default.
- W4381663275 hasAuthorship W4381663275A5063691114 @default.
- W4381663275 hasAuthorship W4381663275A5076869058 @default.
- W4381663275 hasBestOaLocation W43816632751 @default.
- W4381663275 hasConcept C119857082 @default.
- W4381663275 hasConcept C120665830 @default.
- W4381663275 hasConcept C121332964 @default.
- W4381663275 hasConcept C12267149 @default.
- W4381663275 hasConcept C151406439 @default.
- W4381663275 hasConcept C154945302 @default.
- W4381663275 hasConcept C169258074 @default.
- W4381663275 hasConcept C180706569 @default.
- W4381663275 hasConcept C192209626 @default.
- W4381663275 hasConcept C24338571 @default.
- W4381663275 hasConcept C2781067378 @default.
- W4381663275 hasConcept C38652104 @default.
- W4381663275 hasConcept C41008148 @default.
- W4381663275 hasConcept C45942800 @default.
- W4381663275 hasConcept C84525736 @default.
- W4381663275 hasConceptScore W4381663275C119857082 @default.
- W4381663275 hasConceptScore W4381663275C120665830 @default.
- W4381663275 hasConceptScore W4381663275C121332964 @default.
- W4381663275 hasConceptScore W4381663275C12267149 @default.
- W4381663275 hasConceptScore W4381663275C151406439 @default.
- W4381663275 hasConceptScore W4381663275C154945302 @default.
- W4381663275 hasConceptScore W4381663275C169258074 @default.
- W4381663275 hasConceptScore W4381663275C180706569 @default.
- W4381663275 hasConceptScore W4381663275C192209626 @default.
- W4381663275 hasConceptScore W4381663275C24338571 @default.
- W4381663275 hasConceptScore W4381663275C2781067378 @default.
- W4381663275 hasConceptScore W4381663275C38652104 @default.
- W4381663275 hasConceptScore W4381663275C41008148 @default.
- W4381663275 hasConceptScore W4381663275C45942800 @default.
- W4381663275 hasConceptScore W4381663275C84525736 @default.
- W4381663275 hasLocation W43816632751 @default.
- W4381663275 hasOpenAccess W4381663275 @default.
- W4381663275 hasPrimaryLocation W43816632751 @default.
- W4381663275 hasRelatedWork W3033979565 @default.
- W4381663275 hasRelatedWork W3112290855 @default.
- W4381663275 hasRelatedWork W3127425528 @default.
- W4381663275 hasRelatedWork W3177082483 @default.
- W4381663275 hasRelatedWork W4226022663 @default.
- W4381663275 hasRelatedWork W4226398573 @default.
- W4381663275 hasRelatedWork W4283016678 @default.
- W4381663275 hasRelatedWork W4293069612 @default.
- W4381663275 hasRelatedWork W4296901315 @default.
- W4381663275 hasRelatedWork W4318350883 @default.
- W4381663275 isParatext "false" @default.
- W4381663275 isRetracted "false" @default.
- W4381663275 workType "article" @default.