Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381663834> ?p ?o ?g. }
- W4381663834 endingPage "111803" @default.
- W4381663834 startingPage "111803" @default.
- W4381663834 abstract "Solar tracking systems have gained attention in recent years due to their potential to increase the efficiency of various solar energy applications. Both traditional machine learning (ML) and deep learning (DL) techniques have been employed in various solar tracking systems. However, traditional ML models have limitations in processing large datasets and require extensive knowledge of data representation. In contrast, DL models have shown promise in addressing different problems such as temperature forecasting and solar irradiance prediction. Researchers are continuously working to improve the performance of DL models by designing new network architectures and optimization techniques. However, research advancements on DL techniques for solar tracking systems are scattered across several studies, making it difficult to select feasible approaches. Thus, this systematic literature review aims to provide an overview of the state-of-the-art of DL techniques for solar tracking systems. It examines dataset usage, preprocessing methods, feature engineering methods, DL algorithms, and performance metrics used in the identified studies. The review covers articles published from 2012 to 2022, with 37 academic papers meeting the inclusion criteria. The results indicate that deep hybrid learning models were the most popular among researchers. The study also identified research challenges and open research directions related to DL-based solar tracking systems. These include data availability, image data, data normalization, data decomposition, and feature engineering methods. This review is expected to be useful to current and future researchers in addressing trends and challenges related to the application of DL in solar trackers." @default.
- W4381663834 created "2023-06-23" @default.
- W4381663834 creator A5025980566 @default.
- W4381663834 creator A5069225628 @default.
- W4381663834 creator A5075480641 @default.
- W4381663834 creator A5082808405 @default.
- W4381663834 date "2023-09-01" @default.
- W4381663834 modified "2023-09-23" @default.
- W4381663834 title "Deep learning techniques for solar tracking systems: A systematic literature review, research challenges, and open research directions" @default.
- W4381663834 cites W1627978401 @default.
- W4381663834 cites W1901616594 @default.
- W4381663834 cites W2030925139 @default.
- W4381663834 cites W2034027084 @default.
- W4381663834 cites W2071085295 @default.
- W4381663834 cites W2079659750 @default.
- W4381663834 cites W2100495367 @default.
- W4381663834 cites W2106956101 @default.
- W4381663834 cites W2119436188 @default.
- W4381663834 cites W2142837264 @default.
- W4381663834 cites W2180245684 @default.
- W4381663834 cites W2292465733 @default.
- W4381663834 cites W2504196632 @default.
- W4381663834 cites W2525470662 @default.
- W4381663834 cites W2529526315 @default.
- W4381663834 cites W2535393034 @default.
- W4381663834 cites W2545402777 @default.
- W4381663834 cites W2546940680 @default.
- W4381663834 cites W2550748499 @default.
- W4381663834 cites W2603152443 @default.
- W4381663834 cites W2740006679 @default.
- W4381663834 cites W2751355553 @default.
- W4381663834 cites W2759903677 @default.
- W4381663834 cites W2766944722 @default.
- W4381663834 cites W2806679586 @default.
- W4381663834 cites W2807567209 @default.
- W4381663834 cites W2807784722 @default.
- W4381663834 cites W2887280559 @default.
- W4381663834 cites W2888785828 @default.
- W4381663834 cites W2891859208 @default.
- W4381663834 cites W2893707390 @default.
- W4381663834 cites W2897250207 @default.
- W4381663834 cites W2907541716 @default.
- W4381663834 cites W2909613895 @default.
- W4381663834 cites W2919115771 @default.
- W4381663834 cites W2919356958 @default.
- W4381663834 cites W2920988109 @default.
- W4381663834 cites W2929606134 @default.
- W4381663834 cites W2933878133 @default.
- W4381663834 cites W2934533499 @default.
- W4381663834 cites W2944487131 @default.
- W4381663834 cites W2950072808 @default.
- W4381663834 cites W2962766617 @default.
- W4381663834 cites W2966275085 @default.
- W4381663834 cites W2969074705 @default.
- W4381663834 cites W2990612494 @default.
- W4381663834 cites W2995201943 @default.
- W4381663834 cites W2995994523 @default.
- W4381663834 cites W2997684871 @default.
- W4381663834 cites W2998188743 @default.
- W4381663834 cites W3004676964 @default.
- W4381663834 cites W3016726239 @default.
- W4381663834 cites W3019251610 @default.
- W4381663834 cites W3024333932 @default.
- W4381663834 cites W3034099097 @default.
- W4381663834 cites W3044019043 @default.
- W4381663834 cites W3046194311 @default.
- W4381663834 cites W3046298529 @default.
- W4381663834 cites W3049250618 @default.
- W4381663834 cites W3079713928 @default.
- W4381663834 cites W3081707209 @default.
- W4381663834 cites W3097203985 @default.
- W4381663834 cites W3106597763 @default.
- W4381663834 cites W3114013176 @default.
- W4381663834 cites W3118932394 @default.
- W4381663834 cites W3131917094 @default.
- W4381663834 cites W3135523675 @default.
- W4381663834 cites W3142328061 @default.
- W4381663834 cites W3144543375 @default.
- W4381663834 cites W3167881307 @default.
- W4381663834 cites W3179560844 @default.
- W4381663834 cites W3188313962 @default.
- W4381663834 cites W3193801289 @default.
- W4381663834 cites W3210967842 @default.
- W4381663834 cites W321441410 @default.
- W4381663834 cites W3217247703 @default.
- W4381663834 cites W4200550314 @default.
- W4381663834 cites W4205947740 @default.
- W4381663834 cites W4205998851 @default.
- W4381663834 cites W4214829089 @default.
- W4381663834 cites W4220814966 @default.
- W4381663834 cites W4240482100 @default.
- W4381663834 cites W4249247926 @default.
- W4381663834 cites W4251711650 @default.
- W4381663834 cites W4285386496 @default.
- W4381663834 cites W620393456 @default.
- W4381663834 doi "https://doi.org/10.1016/j.solener.2023.111803" @default.
- W4381663834 hasPublicationYear "2023" @default.
- W4381663834 type Work @default.