Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381663952> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4381663952 abstract "Battery state of health (SOH) estimation is crucial for the estimation of the remaining driving range of electric vehicles and is one of the core functions of the battery management system (BMS). The lithium battery feature sample data used in this paper is extracted from the National Aeronautics and Space Administration (NASA) of the United States. Based on the obtained feature samples, a decision tree algorithm is used to analyze them and obtain the importance of each feature. Five groups of different feature inputs are constructed based on the cumulative feature importance, and the original support vector machine regression (SVR) algorithm is applied to perform SOH estimation simulation experiments on each group. The experimental results show that four battery features (voltage at SOC = 100%, voltage, discharge time, and SOC) can be used as input to achieve high estimation accuracy. To improve the training efficiency of the original SVR algorithm, an improved SVR algorithm is proposed, which optimizes the differentiability and solution method of the original SVR objective function. Since the loss function of the original SVR is non-differentiable, a smoothing function is introduced to approximate the loss function of the original SVR, and the original quadratic programming problem is transformed into a convex unconstrained minimization problem. The conjugate gradient algorithm is used to solve the smooth approximation objective function in a sequential minimal optimization manner. The improved SVR algorithm is applied to the simulation experiment with four battery feature inputs. The results show that the improved SVR algorithm significantly reduces the training time compared to the original SVR, with a slight trade-off in simulation accuracy." @default.
- W4381663952 created "2023-06-23" @default.
- W4381663952 creator A5024185141 @default.
- W4381663952 creator A5045582246 @default.
- W4381663952 creator A5078771477 @default.
- W4381663952 date "2023-06-21" @default.
- W4381663952 modified "2023-09-25" @default.
- W4381663952 title "Battery SOH estimation based on decision tree and improved support vector machine regression algorithm" @default.
- W4381663952 cites W1628954589 @default.
- W4381663952 cites W1964357740 @default.
- W4381663952 cites W1979448554 @default.
- W4381663952 cites W1980853758 @default.
- W4381663952 cites W1989654885 @default.
- W4381663952 cites W2032313204 @default.
- W4381663952 cites W2053819957 @default.
- W4381663952 cites W2064575768 @default.
- W4381663952 cites W2074017120 @default.
- W4381663952 cites W2124934380 @default.
- W4381663952 cites W2150117014 @default.
- W4381663952 cites W2201263372 @default.
- W4381663952 cites W2762736364 @default.
- W4381663952 cites W2790625295 @default.
- W4381663952 cites W2793702125 @default.
- W4381663952 cites W2805870878 @default.
- W4381663952 cites W2899724047 @default.
- W4381663952 cites W2911341021 @default.
- W4381663952 cites W2924382816 @default.
- W4381663952 cites W2963691557 @default.
- W4381663952 cites W2967729973 @default.
- W4381663952 cites W2989374172 @default.
- W4381663952 cites W3010779281 @default.
- W4381663952 cites W3118760717 @default.
- W4381663952 cites W3134677430 @default.
- W4381663952 cites W3185125810 @default.
- W4381663952 cites W3205664938 @default.
- W4381663952 cites W3217683824 @default.
- W4381663952 cites W4205976837 @default.
- W4381663952 cites W4210592941 @default.
- W4381663952 cites W4239510810 @default.
- W4381663952 cites W4280503334 @default.
- W4381663952 cites W4285043289 @default.
- W4381663952 cites W4307897928 @default.
- W4381663952 cites W4319159841 @default.
- W4381663952 cites W930082539 @default.
- W4381663952 doi "https://doi.org/10.3389/fenrg.2023.1218580" @default.
- W4381663952 hasPublicationYear "2023" @default.
- W4381663952 type Work @default.
- W4381663952 citedByCount "0" @default.
- W4381663952 crossrefType "journal-article" @default.
- W4381663952 hasAuthorship W4381663952A5024185141 @default.
- W4381663952 hasAuthorship W4381663952A5045582246 @default.
- W4381663952 hasAuthorship W4381663952A5078771477 @default.
- W4381663952 hasBestOaLocation W43816639521 @default.
- W4381663952 hasConcept C11413529 @default.
- W4381663952 hasConcept C12267149 @default.
- W4381663952 hasConcept C126255220 @default.
- W4381663952 hasConcept C138885662 @default.
- W4381663952 hasConcept C154945302 @default.
- W4381663952 hasConcept C2776401178 @default.
- W4381663952 hasConcept C31972630 @default.
- W4381663952 hasConcept C33923547 @default.
- W4381663952 hasConcept C3770464 @default.
- W4381663952 hasConcept C41008148 @default.
- W4381663952 hasConcept C41895202 @default.
- W4381663952 hasConcept C84525736 @default.
- W4381663952 hasConceptScore W4381663952C11413529 @default.
- W4381663952 hasConceptScore W4381663952C12267149 @default.
- W4381663952 hasConceptScore W4381663952C126255220 @default.
- W4381663952 hasConceptScore W4381663952C138885662 @default.
- W4381663952 hasConceptScore W4381663952C154945302 @default.
- W4381663952 hasConceptScore W4381663952C2776401178 @default.
- W4381663952 hasConceptScore W4381663952C31972630 @default.
- W4381663952 hasConceptScore W4381663952C33923547 @default.
- W4381663952 hasConceptScore W4381663952C3770464 @default.
- W4381663952 hasConceptScore W4381663952C41008148 @default.
- W4381663952 hasConceptScore W4381663952C41895202 @default.
- W4381663952 hasConceptScore W4381663952C84525736 @default.
- W4381663952 hasFunder F4320321001 @default.
- W4381663952 hasLocation W43816639521 @default.
- W4381663952 hasOpenAccess W4381663952 @default.
- W4381663952 hasPrimaryLocation W43816639521 @default.
- W4381663952 hasRelatedWork W2094277617 @default.
- W4381663952 hasRelatedWork W2355927362 @default.
- W4381663952 hasRelatedWork W2389896045 @default.
- W4381663952 hasRelatedWork W2906642318 @default.
- W4381663952 hasRelatedWork W3010530419 @default.
- W4381663952 hasRelatedWork W3086642004 @default.
- W4381663952 hasRelatedWork W3119002188 @default.
- W4381663952 hasRelatedWork W3126324552 @default.
- W4381663952 hasRelatedWork W3127425528 @default.
- W4381663952 hasRelatedWork W4361795583 @default.
- W4381663952 hasVolume "11" @default.
- W4381663952 isParatext "false" @default.
- W4381663952 isRetracted "false" @default.
- W4381663952 workType "article" @default.