Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381663989> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4381663989 abstract "This interesting paper by Tian et al. presents a comprehensive investigation of non-informative and weakly informative priors for two parameter (log-location and scale) failure distributions. They provide helpful and practical advice to the Bayesian analyst on the selection of appropriate priors and specifically on the avoidance of posterior estimates that are unrealistic, particularly where data are sparse. The motivating examples provide challenging settings where the information provided by the data is extremely slight. These settings are typical of systems engineered to be very high reliable, where failure data are minimal by design, but where inferences about failure risk are critical. These are also precisely the settings where default choices for noninformative priors may be unexpectedly influential,1 leading either to improper posteriors, or to posteriors which place significant mass in regions which are implausible. The authors' fundamental principle (§5.4) of ensuring that the priors always be constructed to avoid this consequence is very well stated, and one which will bear much repetition in other forums. We have only one main point to make. It relates to their statement in the abstract that ‘for Bayesian inference, there is only one method of constructing equal-tailed credible intervals—but it is necesssary to provide a prior distribution to full specify the model.’ We agree, but our view is that the statement is incomplete: the model must have been chosen to begin with. Although this is not the main point of the paper, the consequences of model choice can be considerable, particularly when all of the inferential action is being carried out on the tails of the distribution, where only a few percent of failures may ever be observed to occur. In this spirit we have reproduced in our Figure 1 the authors' Weibull probability plot (their Figure 1) of the Bearing Cage failure data.2 The estimated parameters of the original Weibull fit are ( β ^ , η ^ ) = ( 2 . 035 , 11792 ) $$ left(hat{beta},hat{eta}right)=left(2.035,11792right) $$ , and we show that fitted cumulative distribution function with a solid line. Choosing the tail areas p = 0 . 1 $$ p=0.1 $$ and q = 0 . 005 $$ q=0.005 $$ these correspond to the parameter values ( t ^ p , λ ^ q ) = ( 3902 , 0 . 224 ) $$ left({hat{t}}_p,{hat{lambda}}_qright)=left(3902,0.224right) $$ , and we have drawn horizontal dashed lines corresponding to p $$ p $$ and q $$ q $$ . A vertical line at t = 8000 $$ t=8000 $$ h marks a key point of inferential interest. We have also shown cumulative distributions of a log Normal and a Gamma distribution with matching values of ( t p , λ q ) $$ left({t}_p,{lambda}_qright) $$ . The tail shapes do of course differ somewhat from one another, the log Normal most markedly. Inference about the 8000 hour point is necessarily affected not only by the choice of prior but also by the choice of model. A paper discussing model selection would have been a rather different one than the current work by Tian et al. Nevertheless we raise the question of whether, if the focus is predominantly on the lower tail of the distribution, a suitable choice of prior on top of a single assumed likelihood be able to do some of the same heavy lifting as a prior on the space of models. Moreover, a prior on ( t p , λ q ) $$ left({t}_p,{lambda}_qright) $$ might yield further advantages in elicitation – given that the large scale parameter σ $$ sigma $$ is presumably harder to characterise then a second quantile q $$ q $$ would be. Even if this proves difficult, future work might helpfully incorporate comments and guidance on model selection. In conclusion, we thank the authors for their comprehensive treatment of the question of prior specification, and the practical guidance they provide. Data used in this paper are available from the papers in the reference list." @default.
- W4381663989 created "2023-06-23" @default.
- W4381663989 creator A5079399460 @default.
- W4381663989 date "2023-06-20" @default.
- W4381663989 modified "2023-09-25" @default.
- W4381663989 title "Discussion of: Specifying prior distributions in reliability applications" @default.
- W4381663989 doi "https://doi.org/10.1002/asmb.2791" @default.
- W4381663989 hasPublicationYear "2023" @default.
- W4381663989 type Work @default.
- W4381663989 citedByCount "0" @default.
- W4381663989 crossrefType "journal-article" @default.
- W4381663989 hasAuthorship W4381663989A5079399460 @default.
- W4381663989 hasBestOaLocation W43816639891 @default.
- W4381663989 hasConcept C105795698 @default.
- W4381663989 hasConcept C107673813 @default.
- W4381663989 hasConcept C119857082 @default.
- W4381663989 hasConcept C121332964 @default.
- W4381663989 hasConcept C124101348 @default.
- W4381663989 hasConcept C149782125 @default.
- W4381663989 hasConcept C154945302 @default.
- W4381663989 hasConcept C160234255 @default.
- W4381663989 hasConcept C162376815 @default.
- W4381663989 hasConcept C163258240 @default.
- W4381663989 hasConcept C17744445 @default.
- W4381663989 hasConcept C177769412 @default.
- W4381663989 hasConcept C199539241 @default.
- W4381663989 hasConcept C2524010 @default.
- W4381663989 hasConcept C2776214188 @default.
- W4381663989 hasConcept C2777026412 @default.
- W4381663989 hasConcept C28719098 @default.
- W4381663989 hasConcept C32230216 @default.
- W4381663989 hasConcept C33923547 @default.
- W4381663989 hasConcept C41008148 @default.
- W4381663989 hasConcept C41426520 @default.
- W4381663989 hasConcept C43214815 @default.
- W4381663989 hasConcept C62520636 @default.
- W4381663989 hasConceptScore W4381663989C105795698 @default.
- W4381663989 hasConceptScore W4381663989C107673813 @default.
- W4381663989 hasConceptScore W4381663989C119857082 @default.
- W4381663989 hasConceptScore W4381663989C121332964 @default.
- W4381663989 hasConceptScore W4381663989C124101348 @default.
- W4381663989 hasConceptScore W4381663989C149782125 @default.
- W4381663989 hasConceptScore W4381663989C154945302 @default.
- W4381663989 hasConceptScore W4381663989C160234255 @default.
- W4381663989 hasConceptScore W4381663989C162376815 @default.
- W4381663989 hasConceptScore W4381663989C163258240 @default.
- W4381663989 hasConceptScore W4381663989C17744445 @default.
- W4381663989 hasConceptScore W4381663989C177769412 @default.
- W4381663989 hasConceptScore W4381663989C199539241 @default.
- W4381663989 hasConceptScore W4381663989C2524010 @default.
- W4381663989 hasConceptScore W4381663989C2776214188 @default.
- W4381663989 hasConceptScore W4381663989C2777026412 @default.
- W4381663989 hasConceptScore W4381663989C28719098 @default.
- W4381663989 hasConceptScore W4381663989C32230216 @default.
- W4381663989 hasConceptScore W4381663989C33923547 @default.
- W4381663989 hasConceptScore W4381663989C41008148 @default.
- W4381663989 hasConceptScore W4381663989C41426520 @default.
- W4381663989 hasConceptScore W4381663989C43214815 @default.
- W4381663989 hasConceptScore W4381663989C62520636 @default.
- W4381663989 hasLocation W43816639891 @default.
- W4381663989 hasOpenAccess W4381663989 @default.
- W4381663989 hasPrimaryLocation W43816639891 @default.
- W4381663989 hasRelatedWork W2078368276 @default.
- W4381663989 hasRelatedWork W2078526825 @default.
- W4381663989 hasRelatedWork W2981671826 @default.
- W4381663989 hasRelatedWork W3131352612 @default.
- W4381663989 hasRelatedWork W3143447564 @default.
- W4381663989 hasRelatedWork W3145488977 @default.
- W4381663989 hasRelatedWork W4213087387 @default.
- W4381663989 hasRelatedWork W4253877353 @default.
- W4381663989 hasRelatedWork W4376139260 @default.
- W4381663989 hasRelatedWork W2159753068 @default.
- W4381663989 isParatext "false" @default.
- W4381663989 isRetracted "false" @default.
- W4381663989 workType "article" @default.