Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381664983> ?p ?o ?g. }
- W4381664983 endingPage "e15520" @default.
- W4381664983 startingPage "e15520" @default.
- W4381664983 abstract "The mammalian spermatozoon has a unique chromatin structure in which the majority of histones are replaced by protamines during spermatogenesis and a small fraction of nucleosomes are retained at specific locations of the genome. The sperm's chromatin structure remains unresolved in most animal species, including the pig. However, mapping the genomic locations of retained nucleosomes in sperm could help understanding the molecular basis of both sperm development and function as well as embryo development. This information could then be useful to identify molecular markers for sperm quality and fertility traits. Here, micrococcal nuclease digestion coupled with high throughput sequencing was performed on pig sperm to map the genomic location of mono- and sub-nucleosomal chromatin fractions in relation to a set of diverse functional elements of the genome, some of which were related to semen quality and early embryogenesis. In particular, the investigated elements were promoters, the different sections of the gene body, coding and non-coding RNAs present in the pig sperm, potential transcription factor binding sites, genomic regions associated to semen quality traits and repeat elements. The analysis yielded 25,293 and 4,239 peaks in the mono- and sub-nucleosomal fractions, covering 0.3% and 0.02% of the porcine genome, respectively. A cross-species comparison revealed positional conservation of the nucleosome retention in sperm between the pig data and a human dataset that found nucleosome enrichment in genomic regions of importance in development. Both gene ontology analysis of the genes mapping nearby the mono-nucleosomal peaks and the identification of putative transcription factor binding motifs within the mono- and the sub- nucleosomal peaks showed enrichment for processes related to sperm function and embryo development. There was significant motif enrichment for Znf263, which in humans was suggested to be a key regulator of genes with paternal preferential expression during early embryogenesis. Moreover, enriched positional intersection was found in the genome between the mono-nucleosomal peaks and both the RNAs present in pig sperm and the RNAs related to sperm quality. There was no co-location between GWAS hits for semen quality in swine and the nucleosomal sites. Finally, the data evidenced depletion of mono-nucleosomes in long interspersed nuclear elements and enrichment of sub-nucleosomes in short interspersed repeat elements.These results suggest that retained nucleosomes in sperm could both mark regulatory elements or genes expressed during spermatogenesis linked to semen quality and fertility and act as transcriptional guides during early embryogenesis. The results of this study support the undertaking of ambitious research using a larger number of samples to robustly assess the positional relationship between histone retention in sperm and the reproductive ability of boars." @default.
- W4381664983 created "2023-06-23" @default.
- W4381664983 creator A5000493799 @default.
- W4381664983 creator A5018666150 @default.
- W4381664983 creator A5019801090 @default.
- W4381664983 creator A5037375245 @default.
- W4381664983 creator A5041354776 @default.
- W4381664983 creator A5042600143 @default.
- W4381664983 creator A5082939160 @default.
- W4381664983 date "2023-06-21" @default.
- W4381664983 modified "2023-10-17" @default.
- W4381664983 title "Micrococcal nuclease sequencing of porcine sperm suggests enriched co-location between retained histones and genomic regions related to semen quality and early embryo development" @default.
- W4381664983 cites W1911278511 @default.
- W4381664983 cites W1989690233 @default.
- W4381664983 cites W2008656832 @default.
- W4381664983 cites W2014677321 @default.
- W4381664983 cites W2020663503 @default.
- W4381664983 cites W2037818631 @default.
- W4381664983 cites W2041482906 @default.
- W4381664983 cites W2047939916 @default.
- W4381664983 cites W2051854412 @default.
- W4381664983 cites W2053508758 @default.
- W4381664983 cites W2068991517 @default.
- W4381664983 cites W2079047745 @default.
- W4381664983 cites W2081969394 @default.
- W4381664983 cites W2082444663 @default.
- W4381664983 cites W2102619694 @default.
- W4381664983 cites W2103163808 @default.
- W4381664983 cites W2103410123 @default.
- W4381664983 cites W2127120875 @default.
- W4381664983 cites W2128957015 @default.
- W4381664983 cites W2130732086 @default.
- W4381664983 cites W2131271579 @default.
- W4381664983 cites W2131449314 @default.
- W4381664983 cites W2132522861 @default.
- W4381664983 cites W2133452708 @default.
- W4381664983 cites W2140214718 @default.
- W4381664983 cites W2143379011 @default.
- W4381664983 cites W2144792857 @default.
- W4381664983 cites W2162508956 @default.
- W4381664983 cites W2168831494 @default.
- W4381664983 cites W2169589032 @default.
- W4381664983 cites W2170551349 @default.
- W4381664983 cites W2171808845 @default.
- W4381664983 cites W2341539131 @default.
- W4381664983 cites W2399865579 @default.
- W4381664983 cites W2414014457 @default.
- W4381664983 cites W258686985 @default.
- W4381664983 cites W2587651673 @default.
- W4381664983 cites W2618569629 @default.
- W4381664983 cites W2739062842 @default.
- W4381664983 cites W2765139664 @default.
- W4381664983 cites W2770620512 @default.
- W4381664983 cites W2792883455 @default.
- W4381664983 cites W2800449764 @default.
- W4381664983 cites W2809809119 @default.
- W4381664983 cites W2811305487 @default.
- W4381664983 cites W2891519606 @default.
- W4381664983 cites W2936954768 @default.
- W4381664983 cites W2943720887 @default.
- W4381664983 cites W2978366977 @default.
- W4381664983 cites W2980980519 @default.
- W4381664983 cites W2991493517 @default.
- W4381664983 cites W3025366223 @default.
- W4381664983 cites W3025656759 @default.
- W4381664983 cites W3041505985 @default.
- W4381664983 cites W3092091222 @default.
- W4381664983 cites W3093352452 @default.
- W4381664983 cites W3109424280 @default.
- W4381664983 cites W3111379596 @default.
- W4381664983 cites W3135462839 @default.
- W4381664983 cites W3215087274 @default.
- W4381664983 cites W4311503031 @default.
- W4381664983 cites W4312093588 @default.
- W4381664983 cites W929810382 @default.
- W4381664983 doi "https://doi.org/10.7717/peerj.15520" @default.
- W4381664983 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37361042" @default.
- W4381664983 hasPublicationYear "2023" @default.
- W4381664983 type Work @default.
- W4381664983 citedByCount "0" @default.
- W4381664983 crossrefType "journal-article" @default.
- W4381664983 hasAuthorship W4381664983A5000493799 @default.
- W4381664983 hasAuthorship W4381664983A5018666150 @default.
- W4381664983 hasAuthorship W4381664983A5019801090 @default.
- W4381664983 hasAuthorship W4381664983A5037375245 @default.
- W4381664983 hasAuthorship W4381664983A5041354776 @default.
- W4381664983 hasAuthorship W4381664983A5042600143 @default.
- W4381664983 hasAuthorship W4381664983A5082939160 @default.
- W4381664983 hasBestOaLocation W43816649831 @default.
- W4381664983 hasConcept C104317684 @default.
- W4381664983 hasConcept C139024627 @default.
- W4381664983 hasConcept C2781087480 @default.
- W4381664983 hasConcept C54355233 @default.
- W4381664983 hasConcept C64927066 @default.
- W4381664983 hasConcept C83640560 @default.
- W4381664983 hasConcept C84772758 @default.
- W4381664983 hasConcept C86803240 @default.
- W4381664983 hasConceptScore W4381664983C104317684 @default.