Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381716346> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4381716346 abstract "To localize structural laryngeal lesions within digital flexible laryngoscopic images and to classify them as benign or suspicious for malignancy using state-of-the-art computer vision detection models.Cross-sectional diagnostic study SETTING: Tertiary care voice clinic METHODS: Digital stroboscopic videos, demographic and clinical data were collected from patients evaluated for a structural laryngeal lesion. Laryngoscopic images were extracted from videos and manually labeled with bounding boxes encompassing the lesion. Four detection models were employed to simultaneously localize and classify structural laryngeal lesions in laryngoscopic images. Classification accuracy, intersection over union (IoU) and mean average precision (mAP) were evaluated as measures of classification, localization, and overall performance, respectively.In total, 8,172 images from 147 patients were included in the laryngeal image dataset. Classification accuracy was 88.5 for individual laryngeal images and increased to 92.0 when all images belonging to the same sequence (video) were considered. Mean average precision across all four detection models was 50.1 using an IoU threshold of 0.5 to determine successful localization.Results of this study showed that deep neural network-based detection models trained using a labeled dataset of digital laryngeal images have the potential to classify structural laryngeal lesions as benign or suspicious for malignancy and to localize them within an image. This approach provides valuable insight into which part of the image was used by the model to determine a diagnosis, allowing clinicians to independently evaluate models' predictions." @default.
- W4381716346 created "2023-06-24" @default.
- W4381716346 creator A5029413843 @default.
- W4381716346 creator A5047166141 @default.
- W4381716346 creator A5047696208 @default.
- W4381716346 creator A5051094765 @default.
- W4381716346 creator A5052559737 @default.
- W4381716346 creator A5065070518 @default.
- W4381716346 creator A5066172601 @default.
- W4381716346 creator A5066996990 @default.
- W4381716346 creator A5079024523 @default.
- W4381716346 creator A5086934712 @default.
- W4381716346 date "2023-06-23" @default.
- W4381716346 modified "2023-09-26" @default.
- W4381716346 title "Interpretable Computer Vision to Detect and Classify Structural Laryngeal Lesions in Digital Flexible Laryngoscopic Images" @default.
- W4381716346 cites W1492894006 @default.
- W4381716346 cites W1861492603 @default.
- W4381716346 cites W1977950420 @default.
- W4381716346 cites W2031489346 @default.
- W4381716346 cites W2035944546 @default.
- W4381716346 cites W2117539524 @default.
- W4381716346 cites W2194775991 @default.
- W4381716346 cites W2543927648 @default.
- W4381716346 cites W2565639579 @default.
- W4381716346 cites W2618530766 @default.
- W4381716346 cites W2944434778 @default.
- W4381716346 cites W3006805607 @default.
- W4381716346 cites W3035396860 @default.
- W4381716346 cites W3172087149 @default.
- W4381716346 cites W3176187859 @default.
- W4381716346 cites W3201720142 @default.
- W4381716346 cites W4224220959 @default.
- W4381716346 cites W4253525579 @default.
- W4381716346 cites W4280575791 @default.
- W4381716346 doi "https://doi.org/10.1002/ohn.411" @default.
- W4381716346 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37350279" @default.
- W4381716346 hasPublicationYear "2023" @default.
- W4381716346 type Work @default.
- W4381716346 citedByCount "1" @default.
- W4381716346 countsByYear W43817163462023 @default.
- W4381716346 crossrefType "journal-article" @default.
- W4381716346 hasAuthorship W4381716346A5029413843 @default.
- W4381716346 hasAuthorship W4381716346A5047166141 @default.
- W4381716346 hasAuthorship W4381716346A5047696208 @default.
- W4381716346 hasAuthorship W4381716346A5051094765 @default.
- W4381716346 hasAuthorship W4381716346A5052559737 @default.
- W4381716346 hasAuthorship W4381716346A5065070518 @default.
- W4381716346 hasAuthorship W4381716346A5066172601 @default.
- W4381716346 hasAuthorship W4381716346A5066996990 @default.
- W4381716346 hasAuthorship W4381716346A5079024523 @default.
- W4381716346 hasAuthorship W4381716346A5086934712 @default.
- W4381716346 hasConcept C141071460 @default.
- W4381716346 hasConcept C153180895 @default.
- W4381716346 hasConcept C154945302 @default.
- W4381716346 hasConcept C2780474809 @default.
- W4381716346 hasConcept C31972630 @default.
- W4381716346 hasConcept C41008148 @default.
- W4381716346 hasConcept C71924100 @default.
- W4381716346 hasConceptScore W4381716346C141071460 @default.
- W4381716346 hasConceptScore W4381716346C153180895 @default.
- W4381716346 hasConceptScore W4381716346C154945302 @default.
- W4381716346 hasConceptScore W4381716346C2780474809 @default.
- W4381716346 hasConceptScore W4381716346C31972630 @default.
- W4381716346 hasConceptScore W4381716346C41008148 @default.
- W4381716346 hasConceptScore W4381716346C71924100 @default.
- W4381716346 hasLocation W43817163461 @default.
- W4381716346 hasLocation W43817163462 @default.
- W4381716346 hasOpenAccess W4381716346 @default.
- W4381716346 hasPrimaryLocation W43817163461 @default.
- W4381716346 hasRelatedWork W1891287906 @default.
- W4381716346 hasRelatedWork W1969923398 @default.
- W4381716346 hasRelatedWork W2036807459 @default.
- W4381716346 hasRelatedWork W2058170566 @default.
- W4381716346 hasRelatedWork W2166024367 @default.
- W4381716346 hasRelatedWork W2229312674 @default.
- W4381716346 hasRelatedWork W2755342338 @default.
- W4381716346 hasRelatedWork W2772917594 @default.
- W4381716346 hasRelatedWork W2775347418 @default.
- W4381716346 hasRelatedWork W3116076068 @default.
- W4381716346 isParatext "false" @default.
- W4381716346 isRetracted "false" @default.
- W4381716346 workType "article" @default.