Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381729945> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4381729945 abstract "Abstract We introduce a polynomial extremal function $$Phi (E,{mathbb {F}},z)$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>Φ</mml:mi> <mml:mo>(</mml:mo> <mml:mi>E</mml:mi> <mml:mo>,</mml:mo> <mml:mi>F</mml:mi> <mml:mo>,</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> which is one of possible generalizations of the classical Siciak extremal function, restricted to subspaces $${mathbb {F}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>F</mml:mi> </mml:math> of the linear space of all polynomials of N variables that are invariant under differentiation. We show that the so-called HCP condition in this situation: $$log Phi (E,{mathbb {F}},z)le Atext { dist}(z,E)^s, zin {mathbb {C}}^N$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mo>log</mml:mo> <mml:mi>Φ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>E</mml:mi> <mml:mo>,</mml:mo> <mml:mi>F</mml:mi> <mml:mo>,</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>≤</mml:mo> <mml:mi>A</mml:mi> <mml:mspace /> <mml:mtext>dist</mml:mtext> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>s</mml:mi> </mml:msup> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mi>z</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:mrow> </mml:math> is equivalent to a generalization of the classical V. Markov’s inequality: $$||D^alpha P||_Ele A_1^{|alpha |}frac{(deg P)^{m|alpha |}}{(|alpha |!)^{m-1}}||P||_E, Pin {mathbb {F}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mo>|</mml:mo> </mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mi>α</mml:mi> </mml:msup> <mml:msub> <mml:mrow> <mml:mi>P</mml:mi> <mml:mo>|</mml:mo> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>E</mml:mi> </mml:msub> <mml:mo>≤</mml:mo> <mml:msubsup> <mml:mi>A</mml:mi> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>α</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> </mml:msubsup> <mml:mfrac> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>deg</mml:mo> <mml:mi>P</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>|</mml:mo> <mml:mi>α</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> </mml:msup> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>|</mml:mo> <mml:mi>α</mml:mi> <mml:mo>|</mml:mo> <mml:mo>!</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mfrac> <mml:msub> <mml:mrow> <mml:mo>|</mml:mo> <mml:mo>|</mml:mo> <mml:mi>P</mml:mi> <mml:mo>|</mml:mo> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>E</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mi>P</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>F</mml:mi> </mml:mrow> </mml:math> with dependence $$m=1/s$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>s</mml:mi> </mml:mrow> </mml:math> . The situation is similar to the basic case (cf. [8]) $${mathbb {F}}={mathbb {K}}[z_1,dots ,z_N],$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo>=</mml:mo> <mml:mi>K</mml:mi> <mml:mo>[</mml:mo> <mml:msub> <mml:mi>z</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>z</mml:mi> <mml:mi>N</mml:mi> </mml:msub> <mml:mo>]</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> where a V. Markov’s type inequality was introduced and the above-mentioned equivalence was proved. As a byproduct, we prove new results related to V. Markov’s inequality for an important class of subsets of $${mathbb {R}}^N$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:math> , which are then applied to obtain the first versions of this inequality for some thin sets, such as spheres in $${mathbb {R}}^{N+1}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> and Euclidean spheres in particular. Furthermore, we prove an interesting fact on the polynomial convex hull of the circle $$S^1$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:math> , as a subset of $${mathbb {R}}^2$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> ." @default.
- W4381729945 created "2023-06-24" @default.
- W4381729945 creator A5067516789 @default.
- W4381729945 creator A5075436222 @default.
- W4381729945 date "2023-05-15" @default.
- W4381729945 modified "2023-09-26" @default.
- W4381729945 title "On Extremal Functions and V. Markov Type Polynomial Inequality for Certain Subsets of $${mathbb {R}}^N$$" @default.
- W4381729945 cites W1963596148 @default.
- W4381729945 cites W1963612676 @default.
- W4381729945 cites W1969092186 @default.
- W4381729945 cites W1980350398 @default.
- W4381729945 cites W1982669908 @default.
- W4381729945 cites W1983547236 @default.
- W4381729945 cites W2000353136 @default.
- W4381729945 cites W2010922781 @default.
- W4381729945 cites W2024368603 @default.
- W4381729945 cites W2041865361 @default.
- W4381729945 cites W2054195354 @default.
- W4381729945 cites W2057719321 @default.
- W4381729945 cites W2102275269 @default.
- W4381729945 cites W2120318578 @default.
- W4381729945 cites W2131592346 @default.
- W4381729945 cites W2140405651 @default.
- W4381729945 cites W2153446996 @default.
- W4381729945 cites W2276261864 @default.
- W4381729945 cites W2331470646 @default.
- W4381729945 cites W2470922878 @default.
- W4381729945 cites W2582686068 @default.
- W4381729945 cites W2599333814 @default.
- W4381729945 cites W2767739686 @default.
- W4381729945 cites W2789328291 @default.
- W4381729945 cites W2789636977 @default.
- W4381729945 cites W2906702498 @default.
- W4381729945 cites W2921900064 @default.
- W4381729945 cites W3009824390 @default.
- W4381729945 cites W4253326049 @default.
- W4381729945 cites W567568486 @default.
- W4381729945 cites W576391154 @default.
- W4381729945 cites W784974996 @default.
- W4381729945 cites W795914245 @default.
- W4381729945 cites W863211017 @default.
- W4381729945 doi "https://doi.org/10.1007/s00365-023-09653-1" @default.
- W4381729945 hasPublicationYear "2023" @default.
- W4381729945 type Work @default.
- W4381729945 citedByCount "0" @default.
- W4381729945 crossrefType "journal-article" @default.
- W4381729945 hasAuthorship W4381729945A5067516789 @default.
- W4381729945 hasAuthorship W4381729945A5075436222 @default.
- W4381729945 hasBestOaLocation W43817299451 @default.
- W4381729945 hasConcept C11413529 @default.
- W4381729945 hasConcept C41008148 @default.
- W4381729945 hasConceptScore W4381729945C11413529 @default.
- W4381729945 hasConceptScore W4381729945C41008148 @default.
- W4381729945 hasLocation W43817299451 @default.
- W4381729945 hasOpenAccess W4381729945 @default.
- W4381729945 hasPrimaryLocation W43817299451 @default.
- W4381729945 hasRelatedWork W2051487156 @default.
- W4381729945 hasRelatedWork W2052122378 @default.
- W4381729945 hasRelatedWork W2053286651 @default.
- W4381729945 hasRelatedWork W2073681303 @default.
- W4381729945 hasRelatedWork W2317200988 @default.
- W4381729945 hasRelatedWork W2544423928 @default.
- W4381729945 hasRelatedWork W2947381795 @default.
- W4381729945 hasRelatedWork W2181413294 @default.
- W4381729945 hasRelatedWork W2181743346 @default.
- W4381729945 hasRelatedWork W2187401768 @default.
- W4381729945 isParatext "false" @default.
- W4381729945 isRetracted "false" @default.
- W4381729945 workType "article" @default.