Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381730519> ?p ?o ?g. }
- W4381730519 abstract "Recommender systems commonly encounter with the problems of data sparsity and cold start. Recently, social recommendation has emerged with the rapid expansion of social platforms, offering an opportunity to alleviate such two obstacles. Nevertheless, there are still two key limitations in existing studies. From the perspective of model design, previous social recommenders only consider the influence of a user's direct friends or uniformly treat the influences from different friends. From the perspective of model learning, most of them apply a sampling-based optimization strategy, which requires high-quality positive and negative samples. In light of the aforementioned limitations, we propose a new probabilistic method, named Graph Attentive Matrix Factorization (GAMF). Our method not only explicitly captures high-order social relationships, but also adopts an attention mechanism to automatically pick up different influences between friends. Moreover, we develop an efficient optimization algorithm to learn model parameters in a non-sampling manner. Extensive experiments on four large-scale datasets show the superiority of GAMF over state-of-the-art recommenders, especially under the cold start scenario." @default.
- W4381730519 created "2023-06-24" @default.
- W4381730519 creator A5005167596 @default.
- W4381730519 creator A5045940041 @default.
- W4381730519 creator A5083304605 @default.
- W4381730519 date "2023-06-21" @default.
- W4381730519 modified "2023-10-16" @default.
- W4381730519 title "Graph attentive matrix factorization for social recommendation" @default.
- W4381730519 cites W1976999215 @default.
- W4381730519 cites W1991055526 @default.
- W4381730519 cites W1994389483 @default.
- W4381730519 cites W2026844232 @default.
- W4381730519 cites W2054141820 @default.
- W4381730519 cites W2056609785 @default.
- W4381730519 cites W2101409192 @default.
- W4381730519 cites W2119825970 @default.
- W4381730519 cites W2144487656 @default.
- W4381730519 cites W2158515176 @default.
- W4381730519 cites W2336920772 @default.
- W4381730519 cites W2340502990 @default.
- W4381730519 cites W2343271409 @default.
- W4381730519 cites W2509678028 @default.
- W4381730519 cites W2590822257 @default.
- W4381730519 cites W2592438485 @default.
- W4381730519 cites W2605350416 @default.
- W4381730519 cites W2614794251 @default.
- W4381730519 cites W2896367309 @default.
- W4381730519 cites W2897610297 @default.
- W4381730519 cites W2907827821 @default.
- W4381730519 cites W2940740645 @default.
- W4381730519 cites W2954123367 @default.
- W4381730519 cites W2962992837 @default.
- W4381730519 cites W2963146368 @default.
- W4381730519 cites W2963521811 @default.
- W4381730519 cites W2979057167 @default.
- W4381730519 cites W2980733333 @default.
- W4381730519 cites W2980778868 @default.
- W4381730519 cites W2982108874 @default.
- W4381730519 cites W2999649805 @default.
- W4381730519 cites W3021893476 @default.
- W4381730519 cites W3038643040 @default.
- W4381730519 cites W3093002391 @default.
- W4381730519 cites W3100278010 @default.
- W4381730519 cites W3104326162 @default.
- W4381730519 cites W3153325943 @default.
- W4381730519 cites W3157314313 @default.
- W4381730519 cites W3217215940 @default.
- W4381730519 cites W4206318305 @default.
- W4381730519 cites W4213217984 @default.
- W4381730519 cites W4214558423 @default.
- W4381730519 cites W4224078239 @default.
- W4381730519 cites W4224230118 @default.
- W4381730519 cites W4224942098 @default.
- W4381730519 cites W4244707235 @default.
- W4381730519 cites W4288083766 @default.
- W4381730519 cites W4293879989 @default.
- W4381730519 cites W4301312111 @default.
- W4381730519 cites W4319302606 @default.
- W4381730519 cites W4321380694 @default.
- W4381730519 cites W4206370688 @default.
- W4381730519 doi "https://doi.org/10.1111/exsy.13385" @default.
- W4381730519 hasPublicationYear "2023" @default.
- W4381730519 type Work @default.
- W4381730519 citedByCount "0" @default.
- W4381730519 crossrefType "journal-article" @default.
- W4381730519 hasAuthorship W4381730519A5005167596 @default.
- W4381730519 hasAuthorship W4381730519A5045940041 @default.
- W4381730519 hasAuthorship W4381730519A5083304605 @default.
- W4381730519 hasConcept C119857082 @default.
- W4381730519 hasConcept C121332964 @default.
- W4381730519 hasConcept C12713177 @default.
- W4381730519 hasConcept C127413603 @default.
- W4381730519 hasConcept C132525143 @default.
- W4381730519 hasConcept C136764020 @default.
- W4381730519 hasConcept C146978453 @default.
- W4381730519 hasConcept C154945302 @default.
- W4381730519 hasConcept C158693339 @default.
- W4381730519 hasConcept C26517878 @default.
- W4381730519 hasConcept C2777522414 @default.
- W4381730519 hasConcept C2778956030 @default.
- W4381730519 hasConcept C38652104 @default.
- W4381730519 hasConcept C41008148 @default.
- W4381730519 hasConcept C42355184 @default.
- W4381730519 hasConcept C49937458 @default.
- W4381730519 hasConcept C518677369 @default.
- W4381730519 hasConcept C557471498 @default.
- W4381730519 hasConcept C62520636 @default.
- W4381730519 hasConcept C80444323 @default.
- W4381730519 hasConceptScore W4381730519C119857082 @default.
- W4381730519 hasConceptScore W4381730519C121332964 @default.
- W4381730519 hasConceptScore W4381730519C12713177 @default.
- W4381730519 hasConceptScore W4381730519C127413603 @default.
- W4381730519 hasConceptScore W4381730519C132525143 @default.
- W4381730519 hasConceptScore W4381730519C136764020 @default.
- W4381730519 hasConceptScore W4381730519C146978453 @default.
- W4381730519 hasConceptScore W4381730519C154945302 @default.
- W4381730519 hasConceptScore W4381730519C158693339 @default.
- W4381730519 hasConceptScore W4381730519C26517878 @default.
- W4381730519 hasConceptScore W4381730519C2777522414 @default.
- W4381730519 hasConceptScore W4381730519C2778956030 @default.