Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381734655> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4381734655 abstract "Abstract Symbolic time series analysis (STSA) plays an important role in the investigation of continuously evolving dynamical systems, where the capability to interpret the joint effects of multiple sensor signals is essential for adequate representation of the embedded knowledge. This technical brief develops and validates, by simulation, an STSA-based algorithm to make timely decisions on dynamical systems for information fusion and pattern classification from ensembles of multisensor time series data. In this context, one of the most commonly used methods has been neural networks (NN) in their various configurations; however, these NN-based methods may require large-volume data and prolonged computational time for training. An alternative feasible method is the STSA-based probabilistic finite state automata (PFSA), which has been shown in recent literature to require significantly less training data and to be much faster than NN for training and, to some extent, for testing. This technical brief reports a modification of the current PFSA methods to accommodate (possibly heterogeneous and not necessarily tightly synchronized) multisensor data fusion and (supervised learning-based) pattern classification in real-time. Efficacy of the proposed method is demonstrated by fusion of time series of position and velocity sensor data, generated from a simulation model of the forced Duffing equation." @default.
- W4381734655 created "2023-06-24" @default.
- W4381734655 creator A5003487011 @default.
- W4381734655 creator A5049896980 @default.
- W4381734655 date "2023-07-26" @default.
- W4381734655 modified "2023-10-16" @default.
- W4381734655 title "Data Fusion and Pattern Classification in Dynamical Systems Via Symbolic Time Series Analysis" @default.
- W4381734655 cites W2011846388 @default.
- W4381734655 cites W2031493386 @default.
- W4381734655 cites W2114655358 @default.
- W4381734655 cites W2141514928 @default.
- W4381734655 cites W2144983735 @default.
- W4381734655 cites W2146392664 @default.
- W4381734655 cites W2169739344 @default.
- W4381734655 cites W2336561492 @default.
- W4381734655 cites W2885195348 @default.
- W4381734655 cites W2916504680 @default.
- W4381734655 cites W2993713496 @default.
- W4381734655 cites W3142273203 @default.
- W4381734655 cites W3155124675 @default.
- W4381734655 cites W3184887362 @default.
- W4381734655 cites W4206149930 @default.
- W4381734655 cites W4252103803 @default.
- W4381734655 doi "https://doi.org/10.1115/1.4062830" @default.
- W4381734655 hasPublicationYear "2023" @default.
- W4381734655 type Work @default.
- W4381734655 citedByCount "0" @default.
- W4381734655 crossrefType "journal-article" @default.
- W4381734655 hasAuthorship W4381734655A5003487011 @default.
- W4381734655 hasAuthorship W4381734655A5049896980 @default.
- W4381734655 hasConcept C112505250 @default.
- W4381734655 hasConcept C119857082 @default.
- W4381734655 hasConcept C121332964 @default.
- W4381734655 hasConcept C124101348 @default.
- W4381734655 hasConcept C143724316 @default.
- W4381734655 hasConcept C151406439 @default.
- W4381734655 hasConcept C151730666 @default.
- W4381734655 hasConcept C153180895 @default.
- W4381734655 hasConcept C154945302 @default.
- W4381734655 hasConcept C17744445 @default.
- W4381734655 hasConcept C199539241 @default.
- W4381734655 hasConcept C2776359362 @default.
- W4381734655 hasConcept C2779343474 @default.
- W4381734655 hasConcept C33954974 @default.
- W4381734655 hasConcept C41008148 @default.
- W4381734655 hasConcept C49937458 @default.
- W4381734655 hasConcept C50644808 @default.
- W4381734655 hasConcept C62520636 @default.
- W4381734655 hasConcept C79379906 @default.
- W4381734655 hasConcept C86803240 @default.
- W4381734655 hasConcept C94625758 @default.
- W4381734655 hasConceptScore W4381734655C112505250 @default.
- W4381734655 hasConceptScore W4381734655C119857082 @default.
- W4381734655 hasConceptScore W4381734655C121332964 @default.
- W4381734655 hasConceptScore W4381734655C124101348 @default.
- W4381734655 hasConceptScore W4381734655C143724316 @default.
- W4381734655 hasConceptScore W4381734655C151406439 @default.
- W4381734655 hasConceptScore W4381734655C151730666 @default.
- W4381734655 hasConceptScore W4381734655C153180895 @default.
- W4381734655 hasConceptScore W4381734655C154945302 @default.
- W4381734655 hasConceptScore W4381734655C17744445 @default.
- W4381734655 hasConceptScore W4381734655C199539241 @default.
- W4381734655 hasConceptScore W4381734655C2776359362 @default.
- W4381734655 hasConceptScore W4381734655C2779343474 @default.
- W4381734655 hasConceptScore W4381734655C33954974 @default.
- W4381734655 hasConceptScore W4381734655C41008148 @default.
- W4381734655 hasConceptScore W4381734655C49937458 @default.
- W4381734655 hasConceptScore W4381734655C50644808 @default.
- W4381734655 hasConceptScore W4381734655C62520636 @default.
- W4381734655 hasConceptScore W4381734655C79379906 @default.
- W4381734655 hasConceptScore W4381734655C86803240 @default.
- W4381734655 hasConceptScore W4381734655C94625758 @default.
- W4381734655 hasIssue "9" @default.
- W4381734655 hasLocation W43817346551 @default.
- W4381734655 hasOpenAccess W4381734655 @default.
- W4381734655 hasPrimaryLocation W43817346551 @default.
- W4381734655 hasRelatedWork W1520658740 @default.
- W4381734655 hasRelatedWork W2080650820 @default.
- W4381734655 hasRelatedWork W2121359697 @default.
- W4381734655 hasRelatedWork W2150798635 @default.
- W4381734655 hasRelatedWork W2242271381 @default.
- W4381734655 hasRelatedWork W2357809648 @default.
- W4381734655 hasRelatedWork W2378555542 @default.
- W4381734655 hasRelatedWork W2381421930 @default.
- W4381734655 hasRelatedWork W2990514669 @default.
- W4381734655 hasRelatedWork W2393723963 @default.
- W4381734655 hasVolume "145" @default.
- W4381734655 isParatext "false" @default.
- W4381734655 isRetracted "false" @default.
- W4381734655 workType "article" @default.