Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381736291> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4381736291 endingPage "13" @default.
- W4381736291 startingPage "1" @default.
- W4381736291 abstract "The performance of multilabel learning depends heavily on the quality of the input features. A mass of irrelevant and redundant features may seriously affect the performance of multilabel learning, and feature selection is an effective technique to solve this problem. However, most multilabel feature selection methods mainly emphasize removing these useless features, and the exploration of feature interaction is ignored. Moreover, the widespread existence of real-world data with uncertainty, ambiguity, and noise limits the performance of feature selection. To this end, our work is dedicated to designing an efficient and robust multilabel feature selection scheme. First, the distribution character of multilabel data is analyzed to generate robust fuzzy multi-neighborhood granules. By exploring the classification information implied in the data under the granularity structure, a robust multilabel <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$k$</tex-math></inline-formula> -nearest neighbor fuzzy rough set model is constructed, and the concept of fuzzy dependency is studied. Second, a series of fuzzy multi-neighborhood uncertainty measures in <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$k$</tex-math></inline-formula> -nearest neighbor fuzzy rough approximation spaces are studied to analyze the correlations of feature pairs, including interactivity. Third, by investigating the uncertainty measure between feature and label, between features, multilabel data is modeled as a complete weighted graph. Then, these vertices are assessed iteratively to guide the assignment of feature weights. Finally, a graph structure-based robust multilabel feature selection algorithm (GRMFS) is designed. The experiments are conducted on fifteen multilabel datasets. The results verify the superior performance of GRMFS as compared with nine representative feature selection methods." @default.
- W4381736291 created "2023-06-24" @default.
- W4381736291 creator A5008041028 @default.
- W4381736291 creator A5013778023 @default.
- W4381736291 creator A5027855221 @default.
- W4381736291 creator A5033075045 @default.
- W4381736291 creator A5038219098 @default.
- W4381736291 creator A5070559820 @default.
- W4381736291 date "2023-01-01" @default.
- W4381736291 modified "2023-10-18" @default.
- W4381736291 title "A Robust Multilabel Feature Selection Approach Based on Graph Structure Considering Fuzzy Dependency and Feature Interaction" @default.
- W4381736291 doi "https://doi.org/10.1109/tfuzz.2023.3287193" @default.
- W4381736291 hasPublicationYear "2023" @default.
- W4381736291 type Work @default.
- W4381736291 citedByCount "0" @default.
- W4381736291 crossrefType "journal-article" @default.
- W4381736291 hasAuthorship W4381736291A5008041028 @default.
- W4381736291 hasAuthorship W4381736291A5013778023 @default.
- W4381736291 hasAuthorship W4381736291A5027855221 @default.
- W4381736291 hasAuthorship W4381736291A5033075045 @default.
- W4381736291 hasAuthorship W4381736291A5038219098 @default.
- W4381736291 hasAuthorship W4381736291A5070559820 @default.
- W4381736291 hasConcept C113238511 @default.
- W4381736291 hasConcept C119857082 @default.
- W4381736291 hasConcept C124101348 @default.
- W4381736291 hasConcept C132525143 @default.
- W4381736291 hasConcept C138885662 @default.
- W4381736291 hasConcept C148483581 @default.
- W4381736291 hasConcept C153180895 @default.
- W4381736291 hasConcept C154945302 @default.
- W4381736291 hasConcept C16311509 @default.
- W4381736291 hasConcept C19768560 @default.
- W4381736291 hasConcept C2776401178 @default.
- W4381736291 hasConcept C33923547 @default.
- W4381736291 hasConcept C41008148 @default.
- W4381736291 hasConcept C41895202 @default.
- W4381736291 hasConcept C42011625 @default.
- W4381736291 hasConcept C58166 @default.
- W4381736291 hasConcept C80444323 @default.
- W4381736291 hasConceptScore W4381736291C113238511 @default.
- W4381736291 hasConceptScore W4381736291C119857082 @default.
- W4381736291 hasConceptScore W4381736291C124101348 @default.
- W4381736291 hasConceptScore W4381736291C132525143 @default.
- W4381736291 hasConceptScore W4381736291C138885662 @default.
- W4381736291 hasConceptScore W4381736291C148483581 @default.
- W4381736291 hasConceptScore W4381736291C153180895 @default.
- W4381736291 hasConceptScore W4381736291C154945302 @default.
- W4381736291 hasConceptScore W4381736291C16311509 @default.
- W4381736291 hasConceptScore W4381736291C19768560 @default.
- W4381736291 hasConceptScore W4381736291C2776401178 @default.
- W4381736291 hasConceptScore W4381736291C33923547 @default.
- W4381736291 hasConceptScore W4381736291C41008148 @default.
- W4381736291 hasConceptScore W4381736291C41895202 @default.
- W4381736291 hasConceptScore W4381736291C42011625 @default.
- W4381736291 hasConceptScore W4381736291C58166 @default.
- W4381736291 hasConceptScore W4381736291C80444323 @default.
- W4381736291 hasLocation W43817362911 @default.
- W4381736291 hasOpenAccess W4381736291 @default.
- W4381736291 hasPrimaryLocation W43817362911 @default.
- W4381736291 hasRelatedWork W1526930689 @default.
- W4381736291 hasRelatedWork W1830625146 @default.
- W4381736291 hasRelatedWork W1913418366 @default.
- W4381736291 hasRelatedWork W2146076056 @default.
- W4381736291 hasRelatedWork W2286904880 @default.
- W4381736291 hasRelatedWork W2369797701 @default.
- W4381736291 hasRelatedWork W2379773790 @default.
- W4381736291 hasRelatedWork W2381168281 @default.
- W4381736291 hasRelatedWork W3204670138 @default.
- W4381736291 hasRelatedWork W5535156 @default.
- W4381736291 isParatext "false" @default.
- W4381736291 isRetracted "false" @default.
- W4381736291 workType "article" @default.