Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381736310> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4381736310 abstract "Abstract The clinicopathological parameters such as residual tumor, grade, FIGO score are often used to predict the survival of ovarian cancer patients, but the 5-year survival of high grade serous ovarian cancer (HGSOC) still remains around 30%. In recent years, a gene expression based molecular prognostic score (mPS) was developed that showed improved prognosis in several cancers including ovarian cancer. The feature extraction using LASSO-Cox regression was applied on the training data with 10-fold cross validation to obtain 20 predictor genes along with the coefficients to derive mPS. The mPS based prognosis of HGSOC patients was validated using the log-rank test and receiver operator characteristic curve. The AUC of 20 gene-based mPS in predicting the 5-year overall survival was around 0.7 in both the training (n=491) and test datasets (n=491). It was also validated across HGSOC patients (n=7542), data collected from the Ovarian Tumor Tissue Analysis (OTTA) consortium. The mPS showed significant impact (adjusted HR = 6.1, 95% CI of HR= 3.65-10.3; p <0.001) on prognosis of HGSOC. The performance of mPS for the prognosis of survival of HGSOC was substantially better than conventional parameters: FIGO (adjusted HR=1.1, 95% CI=0.97-1.2, p=0.121), residual disease (adjusted HR=1.3, 95% CI= 1.13-1.4, p<0.001), and age (adjusted HR=1.2, 95% CI= 0.98-1.6, p=0.08). It was found that focal-adhesion, Wnt and Notch signaling pathways were significantly (p<0.001) upregulated, whereas antigen processing and presentation (p<0.001) was downregulated in high risk HGSOC cohorts based on mPS stratification. The molecular prognostic score derived from 20-gene signature is found to be the novel robust prognostic marker of HGSOC. It could potentially be harnessed in clinical settings to determine the overall survival of ovarian cancer. The high risk HGSOC patients based on mPS stratification could be benefited from alternative therapies targeting Wnt/ Notch signaling pathways and also immune evasion. Author summary The 20-gene signature based molecular prognostic score (mPS) was found to be associated with risk stratification and hence, predicting the overall survival time of HGSOCs. It was applicable in all training HGSOC datasets and across RNA sequencing platforms that also includes the previous reported studies in HGSOC cohorts (Millstein et al., 2020; Talhouk et al., 2020). The 20-gene signature based mPS for the prognosis of overall survival of HGSOC outperformed conventional parameters: age, residual disease and FIGO score. The high or increased risk group of HGSOC based on our mPS stratification was found to have dysregulated pathways of Wnt, Notch, Akt signaling, and antigen presentation. Thus, treatments targeting these pathways might be beneficial for high risk HGSOC and hence anticipated to improve the over-all survival of HGSOC." @default.
- W4381736310 created "2023-06-24" @default.
- W4381736310 creator A5024154775 @default.
- W4381736310 creator A5033557563 @default.
- W4381736310 creator A5069306071 @default.
- W4381736310 creator A5090380865 @default.
- W4381736310 creator A5091473002 @default.
- W4381736310 date "2023-06-21" @default.
- W4381736310 modified "2023-09-27" @default.
- W4381736310 title "The molecular prognostic score, a classifier for risk stratification of high-grade serous ovarian cancer" @default.
- W4381736310 cites W1972747451 @default.
- W4381736310 cites W1987239706 @default.
- W4381736310 cites W2083960841 @default.
- W4381736310 cites W2107060225 @default.
- W4381736310 cites W2112713769 @default.
- W4381736310 cites W2123664981 @default.
- W4381736310 cites W2123696077 @default.
- W4381736310 cites W2126087169 @default.
- W4381736310 cites W2131060185 @default.
- W4381736310 cites W2131593373 @default.
- W4381736310 cites W2138644182 @default.
- W4381736310 cites W2141224543 @default.
- W4381736310 cites W2146512944 @default.
- W4381736310 cites W2149199519 @default.
- W4381736310 cites W2157662622 @default.
- W4381736310 cites W2192853625 @default.
- W4381736310 cites W2230320310 @default.
- W4381736310 cites W2234453634 @default.
- W4381736310 cites W2296242338 @default.
- W4381736310 cites W2802324884 @default.
- W4381736310 cites W2810239069 @default.
- W4381736310 cites W2893122725 @default.
- W4381736310 cites W2923057410 @default.
- W4381736310 cites W2931391344 @default.
- W4381736310 cites W2944930570 @default.
- W4381736310 cites W2957075184 @default.
- W4381736310 cites W2963384555 @default.
- W4381736310 cites W2966289615 @default.
- W4381736310 cites W2972535107 @default.
- W4381736310 cites W3029272205 @default.
- W4381736310 cites W3036427315 @default.
- W4381736310 cites W3126189590 @default.
- W4381736310 cites W3134168476 @default.
- W4381736310 cites W3147894994 @default.
- W4381736310 cites W4294541781 @default.
- W4381736310 cites W4301586065 @default.
- W4381736310 doi "https://doi.org/10.1101/2023.06.19.545525" @default.
- W4381736310 hasPublicationYear "2023" @default.
- W4381736310 type Work @default.
- W4381736310 citedByCount "0" @default.
- W4381736310 crossrefType "posted-content" @default.
- W4381736310 hasAuthorship W4381736310A5024154775 @default.
- W4381736310 hasAuthorship W4381736310A5033557563 @default.
- W4381736310 hasAuthorship W4381736310A5069306071 @default.
- W4381736310 hasAuthorship W4381736310A5090380865 @default.
- W4381736310 hasAuthorship W4381736310A5091473002 @default.
- W4381736310 hasBestOaLocation W43817363101 @default.
- W4381736310 hasConcept C121608353 @default.
- W4381736310 hasConcept C126322002 @default.
- W4381736310 hasConcept C143998085 @default.
- W4381736310 hasConcept C146357865 @default.
- W4381736310 hasConcept C150173356 @default.
- W4381736310 hasConcept C151730666 @default.
- W4381736310 hasConcept C2780427987 @default.
- W4381736310 hasConcept C2993684365 @default.
- W4381736310 hasConcept C50382708 @default.
- W4381736310 hasConcept C71924100 @default.
- W4381736310 hasConcept C86803240 @default.
- W4381736310 hasConceptScore W4381736310C121608353 @default.
- W4381736310 hasConceptScore W4381736310C126322002 @default.
- W4381736310 hasConceptScore W4381736310C143998085 @default.
- W4381736310 hasConceptScore W4381736310C146357865 @default.
- W4381736310 hasConceptScore W4381736310C150173356 @default.
- W4381736310 hasConceptScore W4381736310C151730666 @default.
- W4381736310 hasConceptScore W4381736310C2780427987 @default.
- W4381736310 hasConceptScore W4381736310C2993684365 @default.
- W4381736310 hasConceptScore W4381736310C50382708 @default.
- W4381736310 hasConceptScore W4381736310C71924100 @default.
- W4381736310 hasConceptScore W4381736310C86803240 @default.
- W4381736310 hasLocation W43817363101 @default.
- W4381736310 hasLocation W43817363102 @default.
- W4381736310 hasOpenAccess W4381736310 @default.
- W4381736310 hasPrimaryLocation W43817363101 @default.
- W4381736310 hasRelatedWork W2034837290 @default.
- W4381736310 hasRelatedWork W2356273915 @default.
- W4381736310 hasRelatedWork W2375683817 @default.
- W4381736310 hasRelatedWork W2530830542 @default.
- W4381736310 hasRelatedWork W2783565152 @default.
- W4381736310 hasRelatedWork W3102299777 @default.
- W4381736310 hasRelatedWork W3160223206 @default.
- W4381736310 hasRelatedWork W4239250366 @default.
- W4381736310 hasRelatedWork W4246784297 @default.
- W4381736310 hasRelatedWork W4313596907 @default.
- W4381736310 isParatext "false" @default.
- W4381736310 isRetracted "false" @default.
- W4381736310 workType "article" @default.