Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381738464> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4381738464 abstract "Artificial neural networks (ANNs) are a powerful class of computational models for unravelling neural mechanisms of brain function. However, for neural control of movement, they currently must be integrated with software simulating biomechanical effectors, leading to limiting impracticalities: (1) researchers must rely on two different platforms and (2) biomechanical effectors are not generally differentiable, constraining researchers to reinforcement learning algorithms despite the existence and potential biological relevance of faster training methods. To address these limitations, we developed MotorNet, an open-source Python toolbox for creating arbitrarily complex, differentiable, and biomechanically realistic effectors that can be trained on user-defined motor tasks using ANNs. MotorNet is designed to meet several goals: ease of installation, ease of use, a high-level user-friendly API, and a modular architecture to allow for flexibility in model building. MotorNet requires no dependencies outside Python, making it easy to get started with. For instance, it allows training ANNs on typically used motor control models such as a two joint, six muscle, planar arm within minutes on a typical desktop computer. MotorNet is built on TensorFlow and therefore can implement any network architecture that is possible using the TensorFlow framework. Consequently, it will immediately benefit from advances in artificial intelligence through TensorFlow updates. Finally, it is open source, enabling users to create and share their own improvements, such as new effector and network architectures or custom task designs. MotorNet’s focus on higher order model and task design will alleviate overhead cost to initiate computational projects for new researchers by providing a standalone, ready-to-go framework, and speed up efforts of established computational teams by enabling a focus on concepts and ideas over implementation." @default.
- W4381738464 created "2023-06-24" @default.
- W4381738464 creator A5044278844 @default.
- W4381738464 creator A5044806170 @default.
- W4381738464 creator A5055312755 @default.
- W4381738464 creator A5065364473 @default.
- W4381738464 creator A5076664114 @default.
- W4381738464 date "2023-06-23" @default.
- W4381738464 modified "2023-10-03" @default.
- W4381738464 title "MotorNet: a Python toolbox for controlling differentiable biomechanical effectors with artificial neural networks" @default.
- W4381738464 doi "https://doi.org/10.7554/elife.88591.1" @default.
- W4381738464 hasPublicationYear "2023" @default.
- W4381738464 type Work @default.
- W4381738464 citedByCount "0" @default.
- W4381738464 crossrefType "posted-content" @default.
- W4381738464 hasAuthorship W4381738464A5044278844 @default.
- W4381738464 hasAuthorship W4381738464A5044806170 @default.
- W4381738464 hasAuthorship W4381738464A5055312755 @default.
- W4381738464 hasAuthorship W4381738464A5065364473 @default.
- W4381738464 hasAuthorship W4381738464A5076664114 @default.
- W4381738464 hasBestOaLocation W43817384641 @default.
- W4381738464 hasConcept C101468663 @default.
- W4381738464 hasConcept C107457646 @default.
- W4381738464 hasConcept C115903868 @default.
- W4381738464 hasConcept C119857082 @default.
- W4381738464 hasConcept C120314980 @default.
- W4381738464 hasConcept C134306372 @default.
- W4381738464 hasConcept C154945302 @default.
- W4381738464 hasConcept C199360897 @default.
- W4381738464 hasConcept C202615002 @default.
- W4381738464 hasConcept C2777655017 @default.
- W4381738464 hasConcept C2777904410 @default.
- W4381738464 hasConcept C33923547 @default.
- W4381738464 hasConcept C41008148 @default.
- W4381738464 hasConcept C50644808 @default.
- W4381738464 hasConcept C519991488 @default.
- W4381738464 hasConceptScore W4381738464C101468663 @default.
- W4381738464 hasConceptScore W4381738464C107457646 @default.
- W4381738464 hasConceptScore W4381738464C115903868 @default.
- W4381738464 hasConceptScore W4381738464C119857082 @default.
- W4381738464 hasConceptScore W4381738464C120314980 @default.
- W4381738464 hasConceptScore W4381738464C134306372 @default.
- W4381738464 hasConceptScore W4381738464C154945302 @default.
- W4381738464 hasConceptScore W4381738464C199360897 @default.
- W4381738464 hasConceptScore W4381738464C202615002 @default.
- W4381738464 hasConceptScore W4381738464C2777655017 @default.
- W4381738464 hasConceptScore W4381738464C2777904410 @default.
- W4381738464 hasConceptScore W4381738464C33923547 @default.
- W4381738464 hasConceptScore W4381738464C41008148 @default.
- W4381738464 hasConceptScore W4381738464C50644808 @default.
- W4381738464 hasConceptScore W4381738464C519991488 @default.
- W4381738464 hasLocation W43817384641 @default.
- W4381738464 hasLocation W43817384642 @default.
- W4381738464 hasOpenAccess W4381738464 @default.
- W4381738464 hasPrimaryLocation W43817384641 @default.
- W4381738464 hasRelatedWork W165885910 @default.
- W4381738464 hasRelatedWork W2396946830 @default.
- W4381738464 hasRelatedWork W2571387738 @default.
- W4381738464 hasRelatedWork W2610886376 @default.
- W4381738464 hasRelatedWork W2782135407 @default.
- W4381738464 hasRelatedWork W2891993883 @default.
- W4381738464 hasRelatedWork W2951166193 @default.
- W4381738464 hasRelatedWork W3209887338 @default.
- W4381738464 hasRelatedWork W4285815787 @default.
- W4381738464 hasRelatedWork W4297834298 @default.
- W4381738464 isParatext "false" @default.
- W4381738464 isRetracted "false" @default.
- W4381738464 workType "article" @default.