Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381743993> ?p ?o ?g. }
- W4381743993 endingPage "709" @default.
- W4381743993 startingPage "695" @default.
- W4381743993 abstract "The Caatinga biome is an important ecosystem in the semi-arid region of Brazil. It has significantly degraded due to human activities and is currently a region undergoing desertification. Thus, monitoring the variation in the Caatinga biome has become essential for its sustainable development. However, traditional methods for estimating aboveground biomass (AGB) are time-consuming and destructive. Remote sensing, such as optical and radar imaging, can estimate and correlate with vegetation. Nevertheless, radar imaging is still a novelty to be applied in estimating the AGB of this biome, which is an area with little research. Therefore, this study aimed to use Sentinel-1 images to estimate the AGB of the Caatinga biome in Sergipe State (northeastern Brazil) and to verify its influencing factors. Nineteen sample plots (30 m×30 m) were selected, and the stems of individuals with a circumference at breast height (1.3 m above the ground) equal to or greater than 6.0 cm were measured, and the AGB through an allometric equation was estimated. The Sentinel-1 images from 3 different periods (green, intermediate, and dry periods) were used to consider the phenological conditions of the Caatinga biome. All the pre-processing and extraction of attributes (co-polarized VV (vertical transmit and vertical receive), cross-polarized VH (vertical transmit and horizontal receive), and band ratio VH/VV backscatter, radar vegetation index, dual polarization synthetic aperture radar (SAR) vegetation index (DPSVI), entropy (H), and alpha angle (α)) were performed with Sentinel’s Application Platform. These attributes were used to estimate the AGB through simple and multiple linear regressions and evaluated by the coefficients of determination (R2), correlation (r), and root mean squared error (RMSE). The results showed that the attributes individually had little ability to estimate the AGB of the Caatinga biome in the three periods. Combined with multiple regression, we found that the intermediate period presented the equation with the best results among the observed and estimated variables (R2=0.73; r=0.85; RMSE=8.33 Mg/hm2), followed by the greenness period (R2=0.72; r=0.85; RMSE=8.40 Mg/hm2). The attributes contributing to these equations were VH/VV, DPSVI, H, α, and co-polarized VV for the green period and cross-polarized VH for the intermediate period. The study showed that the Sentinel-1 images could be used to estimate the AGB of the Caatinga biome in the green and intermediate phenological periods since the SAR attributes highly correlated with the estimated variable (i.e., AGB) through multiple linear equations." @default.
- W4381743993 created "2023-06-24" @default.
- W4381743993 creator A5002158648 @default.
- W4381743993 creator A5028586480 @default.
- W4381743993 creator A5028765144 @default.
- W4381743993 creator A5032910899 @default.
- W4381743993 creator A5038827939 @default.
- W4381743993 date "2023-06-01" @default.
- W4381743993 modified "2023-10-17" @default.
- W4381743993 title "Estimation of aboveground biomass of arboreal species in the semi-arid region of Brazil using SAR (synthetic aperture radar) images" @default.
- W4381743993 cites W1527561456 @default.
- W4381743993 cites W180836830 @default.
- W4381743993 cites W1982092758 @default.
- W4381743993 cites W2083805427 @default.
- W4381743993 cites W2093540905 @default.
- W4381743993 cites W2099421092 @default.
- W4381743993 cites W2112144785 @default.
- W4381743993 cites W2125101603 @default.
- W4381743993 cites W2166394891 @default.
- W4381743993 cites W2473278743 @default.
- W4381743993 cites W2613349105 @default.
- W4381743993 cites W2713480535 @default.
- W4381743993 cites W2765174293 @default.
- W4381743993 cites W2782220608 @default.
- W4381743993 cites W2789980967 @default.
- W4381743993 cites W2810881284 @default.
- W4381743993 cites W2890183925 @default.
- W4381743993 cites W2891782712 @default.
- W4381743993 cites W2903703197 @default.
- W4381743993 cites W2903885536 @default.
- W4381743993 cites W2906684500 @default.
- W4381743993 cites W2914237936 @default.
- W4381743993 cites W2952411786 @default.
- W4381743993 cites W2979778934 @default.
- W4381743993 cites W2985495555 @default.
- W4381743993 cites W2993388011 @default.
- W4381743993 cites W2995962693 @default.
- W4381743993 cites W3005284361 @default.
- W4381743993 cites W3006466797 @default.
- W4381743993 cites W3007232977 @default.
- W4381743993 cites W3015655309 @default.
- W4381743993 cites W3017158943 @default.
- W4381743993 cites W3029003383 @default.
- W4381743993 cites W3030297556 @default.
- W4381743993 cites W3034903569 @default.
- W4381743993 cites W3037999099 @default.
- W4381743993 cites W3039563478 @default.
- W4381743993 cites W3048685394 @default.
- W4381743993 cites W3049427752 @default.
- W4381743993 cites W3049452762 @default.
- W4381743993 cites W3083989278 @default.
- W4381743993 cites W3097577170 @default.
- W4381743993 cites W3111619338 @default.
- W4381743993 cites W3112340495 @default.
- W4381743993 cites W3127448440 @default.
- W4381743993 cites W3134696604 @default.
- W4381743993 cites W3134838224 @default.
- W4381743993 cites W3153946926 @default.
- W4381743993 cites W3154228484 @default.
- W4381743993 cites W4200015403 @default.
- W4381743993 cites W4210754771 @default.
- W4381743993 cites W4296849391 @default.
- W4381743993 cites W4312082747 @default.
- W4381743993 doi "https://doi.org/10.1007/s40333-023-0017-4" @default.
- W4381743993 hasPublicationYear "2023" @default.
- W4381743993 type Work @default.
- W4381743993 citedByCount "0" @default.
- W4381743993 crossrefType "journal-article" @default.
- W4381743993 hasAuthorship W4381743993A5002158648 @default.
- W4381743993 hasAuthorship W4381743993A5028586480 @default.
- W4381743993 hasAuthorship W4381743993A5028765144 @default.
- W4381743993 hasAuthorship W4381743993A5032910899 @default.
- W4381743993 hasAuthorship W4381743993A5038827939 @default.
- W4381743993 hasBestOaLocation W43817439932 @default.
- W4381743993 hasConcept C100970517 @default.
- W4381743993 hasConcept C110872660 @default.
- W4381743993 hasConcept C115540264 @default.
- W4381743993 hasConcept C142724271 @default.
- W4381743993 hasConcept C150772632 @default.
- W4381743993 hasConcept C159078339 @default.
- W4381743993 hasConcept C18903297 @default.
- W4381743993 hasConcept C205649164 @default.
- W4381743993 hasConcept C2776133958 @default.
- W4381743993 hasConcept C34153902 @default.
- W4381743993 hasConcept C39432304 @default.
- W4381743993 hasConcept C41008148 @default.
- W4381743993 hasConcept C42060753 @default.
- W4381743993 hasConcept C554190296 @default.
- W4381743993 hasConcept C58237817 @default.
- W4381743993 hasConcept C62649853 @default.
- W4381743993 hasConcept C71924100 @default.
- W4381743993 hasConcept C76155785 @default.
- W4381743993 hasConcept C86803240 @default.
- W4381743993 hasConcept C87360688 @default.
- W4381743993 hasConcept C89920630 @default.
- W4381743993 hasConceptScore W4381743993C100970517 @default.
- W4381743993 hasConceptScore W4381743993C110872660 @default.
- W4381743993 hasConceptScore W4381743993C115540264 @default.