Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381745727> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4381745727 abstract "Social Media (SM) has emerged as a new communication channel between consumers and enterprises to generate a large volume of unstructured text data about products. Many web users post their opinions on several products through the blog, review sites and social networking sites-based text of the attitude. Customer feedback plays a very important role in the daily movements of products. Opinions of others are also taken into account when making decisions to select the best products. Event though, it reads reviews of all the customers, it has difficulty in making decisions based on the information about whether or not to purchase the product. Keeping track of the customer's opinion, manufacturers are also finding it difficult to manage the products which lead to economic collapse. To address this problem, the proposed Random Logistic Vector (RLV) algorithm is used to analyze the product quality and life of the products based on reviews. The first process is data collection based on customer content-based reviews about products from Ecommerce applications. Then, collected data are trained into preprocessing to remove unwanted data and noise. Secondly, preprocessed data are trained into feature extraction to select the best features of the lexicon-based sentiment words, adverbs, adjectives word based on consumer reviews about products from the dataset. Finally, feature extraction data are trained into the proposed Random Logistic Vector (RLV) algorithm is done to identify the polarity or subjectivity orientation that indicates the customer opinion text expressed by the user or client in terms of value. Random Logistic Vector (RLV) algorithm which is used to classify the data to help select the best products and analyze the product quality. It will also lead to the economic growth of productive enterprises." @default.
- W4381745727 created "2023-06-24" @default.
- W4381745727 creator A5061946063 @default.
- W4381745727 date "2023-04-29" @default.
- W4381745727 modified "2023-09-26" @default.
- W4381745727 title "Random Logistic Vector Analysis Based Opinion Mining For Identifying Best Product Using User Reviews in Ecommerce Applications" @default.
- W4381745727 cites W2067505258 @default.
- W4381745727 cites W2170500434 @default.
- W4381745727 cites W2765852206 @default.
- W4381745727 cites W2790974113 @default.
- W4381745727 cites W2791382412 @default.
- W4381745727 cites W2966696683 @default.
- W4381745727 cites W2966772139 @default.
- W4381745727 cites W2995987488 @default.
- W4381745727 cites W3005378242 @default.
- W4381745727 cites W3021904238 @default.
- W4381745727 cites W3023203499 @default.
- W4381745727 cites W3074746074 @default.
- W4381745727 cites W3201302006 @default.
- W4381745727 doi "https://doi.org/10.1109/icdcece57866.2023.10150493" @default.
- W4381745727 hasPublicationYear "2023" @default.
- W4381745727 type Work @default.
- W4381745727 citedByCount "0" @default.
- W4381745727 crossrefType "proceedings-article" @default.
- W4381745727 hasAuthorship W4381745727A5061946063 @default.
- W4381745727 hasConcept C12267149 @default.
- W4381745727 hasConcept C124101348 @default.
- W4381745727 hasConcept C136764020 @default.
- W4381745727 hasConcept C144133560 @default.
- W4381745727 hasConcept C154945302 @default.
- W4381745727 hasConcept C162853370 @default.
- W4381745727 hasConcept C169258074 @default.
- W4381745727 hasConcept C191511416 @default.
- W4381745727 hasConcept C23123220 @default.
- W4381745727 hasConcept C2522767166 @default.
- W4381745727 hasConcept C2524010 @default.
- W4381745727 hasConcept C33923547 @default.
- W4381745727 hasConcept C34736171 @default.
- W4381745727 hasConcept C41008148 @default.
- W4381745727 hasConcept C518677369 @default.
- W4381745727 hasConcept C66402592 @default.
- W4381745727 hasConcept C90673727 @default.
- W4381745727 hasConceptScore W4381745727C12267149 @default.
- W4381745727 hasConceptScore W4381745727C124101348 @default.
- W4381745727 hasConceptScore W4381745727C136764020 @default.
- W4381745727 hasConceptScore W4381745727C144133560 @default.
- W4381745727 hasConceptScore W4381745727C154945302 @default.
- W4381745727 hasConceptScore W4381745727C162853370 @default.
- W4381745727 hasConceptScore W4381745727C169258074 @default.
- W4381745727 hasConceptScore W4381745727C191511416 @default.
- W4381745727 hasConceptScore W4381745727C23123220 @default.
- W4381745727 hasConceptScore W4381745727C2522767166 @default.
- W4381745727 hasConceptScore W4381745727C2524010 @default.
- W4381745727 hasConceptScore W4381745727C33923547 @default.
- W4381745727 hasConceptScore W4381745727C34736171 @default.
- W4381745727 hasConceptScore W4381745727C41008148 @default.
- W4381745727 hasConceptScore W4381745727C518677369 @default.
- W4381745727 hasConceptScore W4381745727C66402592 @default.
- W4381745727 hasConceptScore W4381745727C90673727 @default.
- W4381745727 hasLocation W43817457271 @default.
- W4381745727 hasOpenAccess W4381745727 @default.
- W4381745727 hasPrimaryLocation W43817457271 @default.
- W4381745727 hasRelatedWork W2243502667 @default.
- W4381745727 hasRelatedWork W2252197266 @default.
- W4381745727 hasRelatedWork W2383487638 @default.
- W4381745727 hasRelatedWork W2944636446 @default.
- W4381745727 hasRelatedWork W3012470176 @default.
- W4381745727 hasRelatedWork W3123624369 @default.
- W4381745727 hasRelatedWork W3139442889 @default.
- W4381745727 hasRelatedWork W3193538331 @default.
- W4381745727 hasRelatedWork W4307834015 @default.
- W4381745727 hasRelatedWork W4313150720 @default.
- W4381745727 isParatext "false" @default.
- W4381745727 isRetracted "false" @default.
- W4381745727 workType "article" @default.