Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381792693> ?p ?o ?g. }
- W4381792693 endingPage "6281" @default.
- W4381792693 startingPage "6272" @default.
- W4381792693 abstract "ABSTRACT We present a cosmic density field reconstruction method that augments the traditional reconstruction algorithms with a convolutional neural network (CNN). Following previous work, the key component of our method is to use the reconstructed density field as the input to the neural network. We extend this previous work by exploring how the performance of these reconstruction ideas depends on the input reconstruction algorithm, the reconstruction parameters, and the shot noise of the density field, as well as the robustness of the method. We build an eight-layer CNN and train the network with reconstructed density fields computed from the Quijote suite of simulations. The reconstructed density fields are generated by both the standard algorithm and a new iterative algorithm. In real space at z = 0, we find that the reconstructed field is 90 per cent correlated with the true initial density out to $ksim 0.5 , mathrm{ h}, rm {Mpc}^{-1}$, a significant improvement over $ksim 0.2 , mathrm{ h}, rm {Mpc}^{-1}$ achieved by the input reconstruction algorithms. We find similar improvements in redshift space, including an improved removal of redshift space distortions at small scales. We also find that the method is robust across changes in cosmology. Additionally, the CNN removes much of the variance from the choice of different reconstruction algorithms and reconstruction parameters. However, the effectiveness decreases with increasing shot noise, suggesting that such an approach is best suited to high density samples. This work highlights the additional information in the density field beyond linear scales as well as the power of complementing traditional analysis approaches with machine learning techniques." @default.
- W4381792693 created "2023-06-24" @default.
- W4381792693 creator A5054431009 @default.
- W4381792693 creator A5076324570 @default.
- W4381792693 creator A5087275727 @default.
- W4381792693 creator A5092246891 @default.
- W4381792693 date "2023-06-22" @default.
- W4381792693 modified "2023-09-25" @default.
- W4381792693 title "Effective cosmic density field reconstruction with convolutional neural network" @default.
- W4381792693 cites W1672666614 @default.
- W4381792693 cites W1871260322 @default.
- W4381792693 cites W1916183061 @default.
- W4381792693 cites W1975088809 @default.
- W4381792693 cites W1975825273 @default.
- W4381792693 cites W197865394 @default.
- W4381792693 cites W2003661692 @default.
- W4381792693 cites W2021951024 @default.
- W4381792693 cites W2061923933 @default.
- W4381792693 cites W2089311248 @default.
- W4381792693 cites W2102336972 @default.
- W4381792693 cites W2107742863 @default.
- W4381792693 cites W2110233115 @default.
- W4381792693 cites W2113391777 @default.
- W4381792693 cites W2128759530 @default.
- W4381792693 cites W2136474060 @default.
- W4381792693 cites W2143042549 @default.
- W4381792693 cites W2151185137 @default.
- W4381792693 cites W2171507912 @default.
- W4381792693 cites W2461074338 @default.
- W4381792693 cites W2492495774 @default.
- W4381792693 cites W2609038899 @default.
- W4381792693 cites W2787427854 @default.
- W4381792693 cites W2795959938 @default.
- W4381792693 cites W2797100647 @default.
- W4381792693 cites W2884612602 @default.
- W4381792693 cites W2945100059 @default.
- W4381792693 cites W3004491615 @default.
- W4381792693 cites W3007877641 @default.
- W4381792693 cites W3042393508 @default.
- W4381792693 cites W3080529233 @default.
- W4381792693 cites W3098724574 @default.
- W4381792693 cites W3098769202 @default.
- W4381792693 cites W3099938417 @default.
- W4381792693 cites W3100294950 @default.
- W4381792693 cites W3102844577 @default.
- W4381792693 cites W3102907849 @default.
- W4381792693 cites W3103093820 @default.
- W4381792693 cites W3103880752 @default.
- W4381792693 cites W3104332386 @default.
- W4381792693 cites W3110838891 @default.
- W4381792693 cites W3196138429 @default.
- W4381792693 cites W3205425439 @default.
- W4381792693 cites W4210502036 @default.
- W4381792693 cites W4229861195 @default.
- W4381792693 cites W4288079944 @default.
- W4381792693 cites W4306968094 @default.
- W4381792693 cites W4311473769 @default.
- W4381792693 cites W4321479451 @default.
- W4381792693 doi "https://doi.org/10.1093/mnras/stad1868" @default.
- W4381792693 hasPublicationYear "2023" @default.
- W4381792693 type Work @default.
- W4381792693 citedByCount "0" @default.
- W4381792693 crossrefType "journal-article" @default.
- W4381792693 hasAuthorship W4381792693A5054431009 @default.
- W4381792693 hasAuthorship W4381792693A5076324570 @default.
- W4381792693 hasAuthorship W4381792693A5087275727 @default.
- W4381792693 hasAuthorship W4381792693A5092246891 @default.
- W4381792693 hasBestOaLocation W43817926932 @default.
- W4381792693 hasConcept C104317684 @default.
- W4381792693 hasConcept C11413529 @default.
- W4381792693 hasConcept C115961682 @default.
- W4381792693 hasConcept C121332964 @default.
- W4381792693 hasConcept C141379421 @default.
- W4381792693 hasConcept C154945302 @default.
- W4381792693 hasConcept C185592680 @default.
- W4381792693 hasConcept C202444582 @default.
- W4381792693 hasConcept C2779556658 @default.
- W4381792693 hasConcept C2779898584 @default.
- W4381792693 hasConcept C33024259 @default.
- W4381792693 hasConcept C33923547 @default.
- W4381792693 hasConcept C41008148 @default.
- W4381792693 hasConcept C44870925 @default.
- W4381792693 hasConcept C55493867 @default.
- W4381792693 hasConcept C59375849 @default.
- W4381792693 hasConcept C63479239 @default.
- W4381792693 hasConcept C81363708 @default.
- W4381792693 hasConcept C9652623 @default.
- W4381792693 hasConcept C98444146 @default.
- W4381792693 hasConcept C99498987 @default.
- W4381792693 hasConceptScore W4381792693C104317684 @default.
- W4381792693 hasConceptScore W4381792693C11413529 @default.
- W4381792693 hasConceptScore W4381792693C115961682 @default.
- W4381792693 hasConceptScore W4381792693C121332964 @default.
- W4381792693 hasConceptScore W4381792693C141379421 @default.
- W4381792693 hasConceptScore W4381792693C154945302 @default.
- W4381792693 hasConceptScore W4381792693C185592680 @default.
- W4381792693 hasConceptScore W4381792693C202444582 @default.
- W4381792693 hasConceptScore W4381792693C2779556658 @default.