Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381797923> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4381797923 abstract "Generative Artificial Intelligence (GenAI) has emerged as a powerful technology capable of autonomously producing highly realistic content in various domains, such as text, images, audio, and videos. With its potential for positive applications in creative arts, content generation, virtual assistants, and data synthesis, GenAI has garnered significant attention and adoption. However, the increasing adoption of GenAI raises concerns about its potential misuse for crafting convincing phishing emails, generating disinformation through deepfake videos, and spreading misinformation via authentic-looking social media posts, posing a new set of challenges and risks in the realm of cybersecurity. To combat the threats posed by GenAI, we propose leveraging the Cyber Kill Chain (CKC) to understand the lifecycle of cyberattacks, as a foundational model for cyber defense. This paper aims to provide a comprehensive analysis of the risk areas introduced by the offensive use of GenAI techniques in each phase of the CKC framework. We also analyze the strategies employed by threat actors and examine their utilization throughout different phases of the CKC, highlighting the implications for cyber defense. Additionally, we propose GenAI-enabled defense strategies that are both attack-aware and adaptive. These strategies encompass various techniques such as detection, deception, and adversarial training, among others, aiming to effectively mitigate the risks posed by GenAI-induced cyber threats." @default.
- W4381797923 created "2023-06-24" @default.
- W4381797923 creator A5009452693 @default.
- W4381797923 creator A5020856640 @default.
- W4381797923 creator A5074949168 @default.
- W4381797923 creator A5083240694 @default.
- W4381797923 date "2023-06-22" @default.
- W4381797923 modified "2023-09-26" @default.
- W4381797923 title "Impacts and Risk of Generative AI Technology on Cyber Defense" @default.
- W4381797923 doi "https://doi.org/10.48550/arxiv.2306.13033" @default.
- W4381797923 hasPublicationYear "2023" @default.
- W4381797923 type Work @default.
- W4381797923 citedByCount "0" @default.
- W4381797923 crossrefType "posted-content" @default.
- W4381797923 hasAuthorship W4381797923A5009452693 @default.
- W4381797923 hasAuthorship W4381797923A5020856640 @default.
- W4381797923 hasAuthorship W4381797923A5074949168 @default.
- W4381797923 hasAuthorship W4381797923A5083240694 @default.
- W4381797923 hasBestOaLocation W43817979231 @default.
- W4381797923 hasConcept C108827166 @default.
- W4381797923 hasConcept C110875604 @default.
- W4381797923 hasConcept C127413603 @default.
- W4381797923 hasConcept C136764020 @default.
- W4381797923 hasConcept C145804949 @default.
- W4381797923 hasConcept C146978453 @default.
- W4381797923 hasConcept C154945302 @default.
- W4381797923 hasConcept C176856949 @default.
- W4381797923 hasConcept C177264268 @default.
- W4381797923 hasConcept C199360897 @default.
- W4381797923 hasConcept C2776552730 @default.
- W4381797923 hasConcept C2776990098 @default.
- W4381797923 hasConcept C37736160 @default.
- W4381797923 hasConcept C38652104 @default.
- W4381797923 hasConcept C39890363 @default.
- W4381797923 hasConcept C41008148 @default.
- W4381797923 hasConcept C42475967 @default.
- W4381797923 hasConcept C518677369 @default.
- W4381797923 hasConcept C83860907 @default.
- W4381797923 hasConceptScore W4381797923C108827166 @default.
- W4381797923 hasConceptScore W4381797923C110875604 @default.
- W4381797923 hasConceptScore W4381797923C127413603 @default.
- W4381797923 hasConceptScore W4381797923C136764020 @default.
- W4381797923 hasConceptScore W4381797923C145804949 @default.
- W4381797923 hasConceptScore W4381797923C146978453 @default.
- W4381797923 hasConceptScore W4381797923C154945302 @default.
- W4381797923 hasConceptScore W4381797923C176856949 @default.
- W4381797923 hasConceptScore W4381797923C177264268 @default.
- W4381797923 hasConceptScore W4381797923C199360897 @default.
- W4381797923 hasConceptScore W4381797923C2776552730 @default.
- W4381797923 hasConceptScore W4381797923C2776990098 @default.
- W4381797923 hasConceptScore W4381797923C37736160 @default.
- W4381797923 hasConceptScore W4381797923C38652104 @default.
- W4381797923 hasConceptScore W4381797923C39890363 @default.
- W4381797923 hasConceptScore W4381797923C41008148 @default.
- W4381797923 hasConceptScore W4381797923C42475967 @default.
- W4381797923 hasConceptScore W4381797923C518677369 @default.
- W4381797923 hasConceptScore W4381797923C83860907 @default.
- W4381797923 hasLocation W43817979231 @default.
- W4381797923 hasOpenAccess W4381797923 @default.
- W4381797923 hasPrimaryLocation W43817979231 @default.
- W4381797923 hasRelatedWork W1491018131 @default.
- W4381797923 hasRelatedWork W2981016926 @default.
- W4381797923 hasRelatedWork W3107294378 @default.
- W4381797923 hasRelatedWork W3118192162 @default.
- W4381797923 hasRelatedWork W3164010346 @default.
- W4381797923 hasRelatedWork W3212970127 @default.
- W4381797923 hasRelatedWork W4223520621 @default.
- W4381797923 hasRelatedWork W4225147109 @default.
- W4381797923 hasRelatedWork W4229373419 @default.
- W4381797923 hasRelatedWork W4283456982 @default.
- W4381797923 isParatext "false" @default.
- W4381797923 isRetracted "false" @default.
- W4381797923 workType "article" @default.