Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381802020> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4381802020 abstract "The aim of the present study was to explore the diagnostic value of a deep convolutional neural network (DCNN) model for the diagnosis of pulmonary nodules in adolescent and young adult patients with osteosarcoma. For the present study, 675 chest CT images were retrospectively collected from 109 patients with clinically confirmed osteosarcoma who underwent chest CT examination at Hangzhou Third People's Hospital (Hangzhou, China) from March 2011 to February 2022. CT images were then evaluated using the DCNN and manual models. Subsequently, pulmonary nodules of osteosarcoma were divided into calcified nodules, solid nodules, partially solid nodules and ground glass nodules using the DCNN model. Those patients with osteosarcoma who were diagnosed and treated were followed up to observe dynamic changes in the pulmonary nodules. A total of 3,087 nodules were detected, while 278 nodules were missed compared with those determined using the reference standard given by the consensus of three Experienced radiologists., which was analyzed by two diagnostic radiologists. In the manual model group, 2,442 nodules were detected, while 657 nodules were missed. The DCNN model showed significantly higher sensitivity and specificity compared with the manual model (sensitivity, 0.923 vs. 0.908; specificity, 0.552 vs. 0.351; P<0.05). In addition, the DCNN model yielded an area under the curve (AUC) value of 0.795 [95% confidence interval (CI), 0.743‑0.846], outperforming that of the manual model (AUC, 0.687; 95% CI, 0.629‑0.732; P<0.05). The film reading time of the DCNN model was also significantly shorter compared with that of the manual model [mean ± standard deviation (SD); 173.25±24.10 vs. 328.32±22.72 sec; P<0.05)]. The AUC of calcified nodules, solid nodules, partially solid nodules and ground glass nodules was calculated to be 0.766, 0.771, 0.761 and 0.796, respectively, using the DCNN model. Using this model, the majority of the pulmonary nodules were detected in patients with osteosarcoma at the initial diagnosis (69/109, 62.3%), and the majority of these were found with multiple pulmonary nodules instead of a single nodule (71/109, 65.1% vs. 38/109, 34.9%). These data suggest that, compared with the manual model, the DCNN model proved to be beneficial for the detection of pulmonary nodules in adolescent and young adult patients with osteosarcoma, which may reduce the time of artificial radiograph reading. In conclusion, the proposed DCNN model, developed using data from 675 chest CT images retrospectively collected from 109 patients with clinically confirmed osteosarcoma, may be used as an effective tool to evaluate pulmonary nodules in patients with osteosarcoma." @default.
- W4381802020 created "2023-06-24" @default.
- W4381802020 creator A5012313838 @default.
- W4381802020 creator A5017521861 @default.
- W4381802020 creator A5035540810 @default.
- W4381802020 creator A5039756527 @default.
- W4381802020 creator A5047354572 @default.
- W4381802020 date "2023-06-23" @default.
- W4381802020 modified "2023-10-03" @default.
- W4381802020 title "Deep convolutional neural network based on CT images of pulmonary nodules in the lungs of adolescent and young adult patients with osteosarcoma" @default.
- W4381802020 cites W1981100499 @default.
- W4381802020 cites W2027206247 @default.
- W4381802020 cites W2028427407 @default.
- W4381802020 cites W2042065282 @default.
- W4381802020 cites W2051060428 @default.
- W4381802020 cites W2069174158 @default.
- W4381802020 cites W2081954083 @default.
- W4381802020 cites W2089191118 @default.
- W4381802020 cites W2095003563 @default.
- W4381802020 cites W2122390343 @default.
- W4381802020 cites W2218054336 @default.
- W4381802020 cites W2581824827 @default.
- W4381802020 cites W2598645751 @default.
- W4381802020 cites W2613475099 @default.
- W4381802020 cites W2789298024 @default.
- W4381802020 cites W2895401428 @default.
- W4381802020 cites W2936111010 @default.
- W4381802020 cites W2944117232 @default.
- W4381802020 cites W2946185430 @default.
- W4381802020 cites W2958537074 @default.
- W4381802020 cites W2998393945 @default.
- W4381802020 cites W2999435167 @default.
- W4381802020 cites W2999764612 @default.
- W4381802020 cites W3020045953 @default.
- W4381802020 cites W3081662889 @default.
- W4381802020 cites W3091131821 @default.
- W4381802020 doi "https://doi.org/10.3892/ol.2023.13930" @default.
- W4381802020 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37427350" @default.
- W4381802020 hasPublicationYear "2023" @default.
- W4381802020 type Work @default.
- W4381802020 citedByCount "1" @default.
- W4381802020 crossrefType "journal-article" @default.
- W4381802020 hasAuthorship W4381802020A5012313838 @default.
- W4381802020 hasAuthorship W4381802020A5017521861 @default.
- W4381802020 hasAuthorship W4381802020A5035540810 @default.
- W4381802020 hasAuthorship W4381802020A5039756527 @default.
- W4381802020 hasAuthorship W4381802020A5047354572 @default.
- W4381802020 hasBestOaLocation W43818020201 @default.
- W4381802020 hasConcept C126322002 @default.
- W4381802020 hasConcept C126838900 @default.
- W4381802020 hasConcept C142724271 @default.
- W4381802020 hasConcept C151730666 @default.
- W4381802020 hasConcept C2776256026 @default.
- W4381802020 hasConcept C2776731575 @default.
- W4381802020 hasConcept C2777714996 @default.
- W4381802020 hasConcept C2777760704 @default.
- W4381802020 hasConcept C2780244788 @default.
- W4381802020 hasConcept C2989005 @default.
- W4381802020 hasConcept C44249647 @default.
- W4381802020 hasConcept C544519230 @default.
- W4381802020 hasConcept C71924100 @default.
- W4381802020 hasConcept C86803240 @default.
- W4381802020 hasConceptScore W4381802020C126322002 @default.
- W4381802020 hasConceptScore W4381802020C126838900 @default.
- W4381802020 hasConceptScore W4381802020C142724271 @default.
- W4381802020 hasConceptScore W4381802020C151730666 @default.
- W4381802020 hasConceptScore W4381802020C2776256026 @default.
- W4381802020 hasConceptScore W4381802020C2776731575 @default.
- W4381802020 hasConceptScore W4381802020C2777714996 @default.
- W4381802020 hasConceptScore W4381802020C2777760704 @default.
- W4381802020 hasConceptScore W4381802020C2780244788 @default.
- W4381802020 hasConceptScore W4381802020C2989005 @default.
- W4381802020 hasConceptScore W4381802020C44249647 @default.
- W4381802020 hasConceptScore W4381802020C544519230 @default.
- W4381802020 hasConceptScore W4381802020C71924100 @default.
- W4381802020 hasConceptScore W4381802020C86803240 @default.
- W4381802020 hasIssue "2" @default.
- W4381802020 hasLocation W43818020201 @default.
- W4381802020 hasLocation W43818020202 @default.
- W4381802020 hasLocation W43818020203 @default.
- W4381802020 hasOpenAccess W4381802020 @default.
- W4381802020 hasPrimaryLocation W43818020201 @default.
- W4381802020 hasRelatedWork W2128279678 @default.
- W4381802020 hasRelatedWork W2278533172 @default.
- W4381802020 hasRelatedWork W2387602347 @default.
- W4381802020 hasRelatedWork W3104273271 @default.
- W4381802020 hasRelatedWork W3205158931 @default.
- W4381802020 hasRelatedWork W4210267547 @default.
- W4381802020 hasRelatedWork W4283160551 @default.
- W4381802020 hasRelatedWork W4285733903 @default.
- W4381802020 hasRelatedWork W4317600173 @default.
- W4381802020 hasRelatedWork W54659473 @default.
- W4381802020 hasVolume "26" @default.
- W4381802020 isParatext "false" @default.
- W4381802020 isRetracted "false" @default.
- W4381802020 workType "article" @default.