Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381804893> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4381804893 endingPage "110" @default.
- W4381804893 startingPage "102" @default.
- W4381804893 abstract "The results of studying the parameters of the spectra of speech signals by machine learning with the use of neural networks are presented. This study was carried out in order to confirm experimentally the possibility of performing an assessment of these parameters for the detection of Parkinson’s disease in the early stages (IT diagnostics). During the study, the public database was used, which systematized the spectra of vowel sounds uttered by patients with Parkinson’s disease. The applied method is binary data classification. In the course of the study, the speech data spectrum was first preprocessed, which consisted of filtering it in order to remove its noise components and eliminate bursts and gaps in it. Then the parameters of the processed spectrum of speech data were determined: average value, maximum and minimum, peak, wavelet coefficients, MFCC and TQWT. After that, the object was selected using the PCA algorithm. The model was trained using the Knn and Random Forest algorithms, as well as the Bayesian neural network. The Bayesian optimization algorithm and the GridSearch method were used to find the best model hyperparameters. It has been established that when using Knn, Random Forest and Bayesian neural network, it is possible to increase the accuracy of recognition of Parkinson’s disease by 94.7; 88.16 and 74.74 %, respectively. A similar study by other scientists showed that the recognition accuracy of data sets was only 86 %." @default.
- W4381804893 created "2023-06-24" @default.
- W4381804893 creator A5068765644 @default.
- W4381804893 creator A5079199687 @default.
- W4381804893 date "2023-06-22" @default.
- W4381804893 modified "2023-10-05" @default.
- W4381804893 title "IT Diagnostics of Parkinson’s Disease Based on the Analysis of Voice Markers and Machine Learning" @default.
- W4381804893 cites W1999385317 @default.
- W4381804893 cites W2027461913 @default.
- W4381804893 cites W2052684427 @default.
- W4381804893 cites W2112797878 @default.
- W4381804893 cites W2123714584 @default.
- W4381804893 cites W2158698691 @default.
- W4381804893 cites W2168148556 @default.
- W4381804893 cites W2743691251 @default.
- W4381804893 cites W2768329238 @default.
- W4381804893 cites W2896691302 @default.
- W4381804893 cites W2900869458 @default.
- W4381804893 cites W2907654371 @default.
- W4381804893 cites W3036387823 @default.
- W4381804893 cites W3192950629 @default.
- W4381804893 doi "https://doi.org/10.35596/1729-7648-2023-21-3-102-110" @default.
- W4381804893 hasPublicationYear "2023" @default.
- W4381804893 type Work @default.
- W4381804893 citedByCount "1" @default.
- W4381804893 countsByYear W43818048932023 @default.
- W4381804893 crossrefType "journal-article" @default.
- W4381804893 hasAuthorship W4381804893A5068765644 @default.
- W4381804893 hasAuthorship W4381804893A5079199687 @default.
- W4381804893 hasBestOaLocation W43818048931 @default.
- W4381804893 hasConcept C10485038 @default.
- W4381804893 hasConcept C107673813 @default.
- W4381804893 hasConcept C119857082 @default.
- W4381804893 hasConcept C12267149 @default.
- W4381804893 hasConcept C151989614 @default.
- W4381804893 hasConcept C153180895 @default.
- W4381804893 hasConcept C154945302 @default.
- W4381804893 hasConcept C169258074 @default.
- W4381804893 hasConcept C23224414 @default.
- W4381804893 hasConcept C28490314 @default.
- W4381804893 hasConcept C41008148 @default.
- W4381804893 hasConcept C50644808 @default.
- W4381804893 hasConcept C52001869 @default.
- W4381804893 hasConcept C52622490 @default.
- W4381804893 hasConcept C8642999 @default.
- W4381804893 hasConceptScore W4381804893C10485038 @default.
- W4381804893 hasConceptScore W4381804893C107673813 @default.
- W4381804893 hasConceptScore W4381804893C119857082 @default.
- W4381804893 hasConceptScore W4381804893C12267149 @default.
- W4381804893 hasConceptScore W4381804893C151989614 @default.
- W4381804893 hasConceptScore W4381804893C153180895 @default.
- W4381804893 hasConceptScore W4381804893C154945302 @default.
- W4381804893 hasConceptScore W4381804893C169258074 @default.
- W4381804893 hasConceptScore W4381804893C23224414 @default.
- W4381804893 hasConceptScore W4381804893C28490314 @default.
- W4381804893 hasConceptScore W4381804893C41008148 @default.
- W4381804893 hasConceptScore W4381804893C50644808 @default.
- W4381804893 hasConceptScore W4381804893C52001869 @default.
- W4381804893 hasConceptScore W4381804893C52622490 @default.
- W4381804893 hasConceptScore W4381804893C8642999 @default.
- W4381804893 hasIssue "3" @default.
- W4381804893 hasLocation W43818048931 @default.
- W4381804893 hasOpenAccess W4381804893 @default.
- W4381804893 hasPrimaryLocation W43818048931 @default.
- W4381804893 hasRelatedWork W2945959761 @default.
- W4381804893 hasRelatedWork W3191461861 @default.
- W4381804893 hasRelatedWork W3209934886 @default.
- W4381804893 hasRelatedWork W3212135906 @default.
- W4381804893 hasRelatedWork W4206663195 @default.
- W4381804893 hasRelatedWork W4297820529 @default.
- W4381804893 hasRelatedWork W4307632867 @default.
- W4381804893 hasRelatedWork W4320494184 @default.
- W4381804893 hasRelatedWork W4367349834 @default.
- W4381804893 hasRelatedWork W4375930479 @default.
- W4381804893 hasVolume "21" @default.
- W4381804893 isParatext "false" @default.
- W4381804893 isRetracted "false" @default.
- W4381804893 workType "article" @default.