Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381836922> ?p ?o ?g. }
- W4381836922 endingPage "530" @default.
- W4381836922 startingPage "530" @default.
- W4381836922 abstract "Predictive maintenance has been employed to reduce maintenance costs and production losses and to prevent any failure before it occurs. The framework proposed in this work performs diesel engine prognosis by evaluating the absolute value of the failure severity using random forest (RF) and multilayer perceptron (MLP) neural networks. A database was implemented with 3500 failure scenarios to overcome the problem of inducing destructive failures in diesel engines. Diesel engine failure signals were developed with the zero-dimensional thermodynamic model inside a cylinder coupled with the crankshaft torsional vibration model. Artificial neural networks and random forest regression models were employed for classifying and quantifying failures. The methodology was applied alongside an engine simulator to assess effectiveness and accuracy. The best-fitting performance was obtained with the random forest regressor with an RMSE value of 0.10 ± 0.03%." @default.
- W4381836922 created "2023-06-25" @default.
- W4381836922 creator A5003870082 @default.
- W4381836922 creator A5023068404 @default.
- W4381836922 creator A5023827237 @default.
- W4381836922 creator A5024388016 @default.
- W4381836922 creator A5044901219 @default.
- W4381836922 creator A5044981679 @default.
- W4381836922 creator A5046191786 @default.
- W4381836922 creator A5047733466 @default.
- W4381836922 creator A5060710505 @default.
- W4381836922 creator A5062101525 @default.
- W4381836922 creator A5071551639 @default.
- W4381836922 creator A5091027705 @default.
- W4381836922 date "2023-05-05" @default.
- W4381836922 modified "2023-10-01" @default.
- W4381836922 title "Diesel Engine Fault Prediction Using Artificial Intelligence Regression Methods" @default.
- W4381836922 cites W1969309386 @default.
- W4381836922 cites W1972571808 @default.
- W4381836922 cites W1973478487 @default.
- W4381836922 cites W1983844654 @default.
- W4381836922 cites W1987543709 @default.
- W4381836922 cites W1997379681 @default.
- W4381836922 cites W2029973806 @default.
- W4381836922 cites W2048587349 @default.
- W4381836922 cites W2050049213 @default.
- W4381836922 cites W2054130145 @default.
- W4381836922 cites W2074710355 @default.
- W4381836922 cites W2095727900 @default.
- W4381836922 cites W2102636708 @default.
- W4381836922 cites W2103165366 @default.
- W4381836922 cites W2335003684 @default.
- W4381836922 cites W2487770199 @default.
- W4381836922 cites W2514173981 @default.
- W4381836922 cites W2610314771 @default.
- W4381836922 cites W2768713623 @default.
- W4381836922 cites W2789504340 @default.
- W4381836922 cites W2789565606 @default.
- W4381836922 cites W2796358601 @default.
- W4381836922 cites W2887960321 @default.
- W4381836922 cites W2889072430 @default.
- W4381836922 cites W2891952629 @default.
- W4381836922 cites W2896556344 @default.
- W4381836922 cites W2932115805 @default.
- W4381836922 cites W2940935128 @default.
- W4381836922 cites W2951083400 @default.
- W4381836922 cites W2957568672 @default.
- W4381836922 cites W2972184175 @default.
- W4381836922 cites W2982073446 @default.
- W4381836922 cites W2996558393 @default.
- W4381836922 cites W3000651692 @default.
- W4381836922 cites W3004482624 @default.
- W4381836922 cites W3010531793 @default.
- W4381836922 cites W3012237329 @default.
- W4381836922 cites W3097132272 @default.
- W4381836922 cites W3129421364 @default.
- W4381836922 cites W3158893497 @default.
- W4381836922 cites W3170688388 @default.
- W4381836922 cites W4249564456 @default.
- W4381836922 cites W4253234135 @default.
- W4381836922 cites W4280643789 @default.
- W4381836922 cites W620261401 @default.
- W4381836922 cites W622233167 @default.
- W4381836922 doi "https://doi.org/10.3390/machines11050530" @default.
- W4381836922 hasPublicationYear "2023" @default.
- W4381836922 type Work @default.
- W4381836922 citedByCount "0" @default.
- W4381836922 crossrefType "journal-article" @default.
- W4381836922 hasAuthorship W4381836922A5003870082 @default.
- W4381836922 hasAuthorship W4381836922A5023068404 @default.
- W4381836922 hasAuthorship W4381836922A5023827237 @default.
- W4381836922 hasAuthorship W4381836922A5024388016 @default.
- W4381836922 hasAuthorship W4381836922A5044901219 @default.
- W4381836922 hasAuthorship W4381836922A5044981679 @default.
- W4381836922 hasAuthorship W4381836922A5046191786 @default.
- W4381836922 hasAuthorship W4381836922A5047733466 @default.
- W4381836922 hasAuthorship W4381836922A5060710505 @default.
- W4381836922 hasAuthorship W4381836922A5062101525 @default.
- W4381836922 hasAuthorship W4381836922A5071551639 @default.
- W4381836922 hasAuthorship W4381836922A5091027705 @default.
- W4381836922 hasBestOaLocation W43818369221 @default.
- W4381836922 hasConcept C119857082 @default.
- W4381836922 hasConcept C127313418 @default.
- W4381836922 hasConcept C127413603 @default.
- W4381836922 hasConcept C138171918 @default.
- W4381836922 hasConcept C154945302 @default.
- W4381836922 hasConcept C165205528 @default.
- W4381836922 hasConcept C169258074 @default.
- W4381836922 hasConcept C171146098 @default.
- W4381836922 hasConcept C175551986 @default.
- W4381836922 hasConcept C179717631 @default.
- W4381836922 hasConcept C200601418 @default.
- W4381836922 hasConcept C2776981777 @default.
- W4381836922 hasConcept C2780804531 @default.
- W4381836922 hasConcept C41008148 @default.
- W4381836922 hasConcept C50644808 @default.
- W4381836922 hasConcept C60908668 @default.
- W4381836922 hasConcept C78519656 @default.