Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381837482> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4381837482 abstract "In this study, it is aimed to predict the data obtained from the answers given by the students who receive programming education to open-ended questions with text mining algorithms. Thus, text-based data on computational identity and programming empowement were analyzed and the performances of different algorithms were compared. The participants of the research consisted of 646 students whose age range was between 12-20 and who received programming education. An electronic form consisting of open-ended questions was prepared to collect the opinions of the students who received programming education. A total of six open-ended questions have been prepared about computational identity and (3 questions) and programming empowerment (3 questions). The text mining process was followed in the analysis of the data set. Analyzes were made in Python 3.8 program. In the study, the performance of Word2vec (W2v) and Term Frequency-Inverse Document Frequency (TF-IDF) word representation methods with five machine learning algorithms were compared: (a) Logistic regression, (b) Decision tree, (c) Support Vector Machines, (d) Random Forest, (e) Neural Network. Regarding computational identity, the highest prediction accuracy was found in artificial neural network (tf-idf) and logistic regression (tf-idf) algorithms. These algorithms have an accuracy rate of 93% regarding computational identity. It was determined that the logistic regression (tf-idf) method reached the highest accuracy prediction rate (96%) in programming empowement. Following this method, the accuracy rate of random forest (tf-idf), support vector machine (tf-idf) and artificial neural network (tf-idf) algorithms was 94%. The fact that these obtained values are above 90% indicates that the estimation performance is sufficient." @default.
- W4381837482 created "2023-06-25" @default.
- W4381837482 creator A5001374957 @default.
- W4381837482 creator A5021747248 @default.
- W4381837482 date "2023-06-30" @default.
- W4381837482 modified "2023-10-18" @default.
- W4381837482 title "Investigating Computational Identity and Empowerment of The Students Studying Programming: A Text Mining Study" @default.
- W4381837482 doi "https://doi.org/10.51119/ereegf.2023.29" @default.
- W4381837482 hasPublicationYear "2023" @default.
- W4381837482 type Work @default.
- W4381837482 citedByCount "0" @default.
- W4381837482 crossrefType "journal-article" @default.
- W4381837482 hasAuthorship W4381837482A5001374957 @default.
- W4381837482 hasAuthorship W4381837482A5021747248 @default.
- W4381837482 hasBestOaLocation W43818374821 @default.
- W4381837482 hasConcept C111919701 @default.
- W4381837482 hasConcept C119857082 @default.
- W4381837482 hasConcept C121332964 @default.
- W4381837482 hasConcept C12267149 @default.
- W4381837482 hasConcept C124101348 @default.
- W4381837482 hasConcept C151956035 @default.
- W4381837482 hasConcept C154945302 @default.
- W4381837482 hasConcept C169258074 @default.
- W4381837482 hasConcept C2776461190 @default.
- W4381837482 hasConcept C41008148 @default.
- W4381837482 hasConcept C41608201 @default.
- W4381837482 hasConcept C50644808 @default.
- W4381837482 hasConcept C519991488 @default.
- W4381837482 hasConcept C61797465 @default.
- W4381837482 hasConcept C62520636 @default.
- W4381837482 hasConcept C81758059 @default.
- W4381837482 hasConceptScore W4381837482C111919701 @default.
- W4381837482 hasConceptScore W4381837482C119857082 @default.
- W4381837482 hasConceptScore W4381837482C121332964 @default.
- W4381837482 hasConceptScore W4381837482C12267149 @default.
- W4381837482 hasConceptScore W4381837482C124101348 @default.
- W4381837482 hasConceptScore W4381837482C151956035 @default.
- W4381837482 hasConceptScore W4381837482C154945302 @default.
- W4381837482 hasConceptScore W4381837482C169258074 @default.
- W4381837482 hasConceptScore W4381837482C2776461190 @default.
- W4381837482 hasConceptScore W4381837482C41008148 @default.
- W4381837482 hasConceptScore W4381837482C41608201 @default.
- W4381837482 hasConceptScore W4381837482C50644808 @default.
- W4381837482 hasConceptScore W4381837482C519991488 @default.
- W4381837482 hasConceptScore W4381837482C61797465 @default.
- W4381837482 hasConceptScore W4381837482C62520636 @default.
- W4381837482 hasConceptScore W4381837482C81758059 @default.
- W4381837482 hasLocation W43818374821 @default.
- W4381837482 hasLocation W43818374822 @default.
- W4381837482 hasOpenAccess W4381837482 @default.
- W4381837482 hasPrimaryLocation W43818374821 @default.
- W4381837482 hasRelatedWork W2985924212 @default.
- W4381837482 hasRelatedWork W3138469915 @default.
- W4381837482 hasRelatedWork W3195168932 @default.
- W4381837482 hasRelatedWork W3195610867 @default.
- W4381837482 hasRelatedWork W4321636153 @default.
- W4381837482 hasRelatedWork W4367335893 @default.
- W4381837482 hasRelatedWork W4377964522 @default.
- W4381837482 hasRelatedWork W4383535405 @default.
- W4381837482 hasRelatedWork W4384520063 @default.
- W4381837482 hasRelatedWork W4384828018 @default.
- W4381837482 isParatext "false" @default.
- W4381837482 isRetracted "false" @default.
- W4381837482 workType "article" @default.