Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381839085> ?p ?o ?g. }
- W4381839085 endingPage "e0282549" @default.
- W4381839085 startingPage "e0282549" @default.
- W4381839085 abstract "Diffusion-weighted magnetic resonance imaging (DW-MRI) is a non-invasive technique that is sensitive to microstructural geometry in neural tissue and is useful for the detection of neuropathology in research and clinical settings. Tensor-valued diffusion encoding schemes (b-tensor) have been developed to enrich the microstructural data that can be obtained through DW-MRI. These advanced methods have proven to be more specific to microstructural properties than conventional DW-MRI acquisitions. Additionally, machine learning methods are particularly useful for the study of multidimensional data sets. In this work, we have tested the reach of b-tensor encoding data analyses with machine learning in different histopathological scenarios. We achieved this in three steps: 1) We induced different levels of white matter damage in rodent optic nerves. 2) We obtained ex vivo DW-MRI data with b-tensor encoding schemes and calculated quantitative metrics using Q-space trajectory imaging. 3) We used a machine learning model to identify the main contributing features and built a voxel-wise probabilistic classification map of histological damage. Our results show that this model is sensitive to characteristics of microstructural damage. In conclusion, b-tensor encoded DW-MRI data analyzed with machine learning methods, have the potential to be further developed for the detection of histopathology and neurodegeneration." @default.
- W4381839085 created "2023-06-25" @default.
- W4381839085 creator A5001012467 @default.
- W4381839085 creator A5005485312 @default.
- W4381839085 creator A5065379907 @default.
- W4381839085 creator A5085004017 @default.
- W4381839085 creator A5091902626 @default.
- W4381839085 date "2023-06-23" @default.
- W4381839085 modified "2023-10-18" @default.
- W4381839085 title "Differentiation of white matter histopathology using b-tensor encoding and machine learning" @default.
- W4381839085 cites W1821725364 @default.
- W4381839085 cites W1967442086 @default.
- W4381839085 cites W1994972002 @default.
- W4381839085 cites W2022530159 @default.
- W4381839085 cites W2029893976 @default.
- W4381839085 cites W2036847091 @default.
- W4381839085 cites W2064062460 @default.
- W4381839085 cites W2067267561 @default.
- W4381839085 cites W2087464034 @default.
- W4381839085 cites W2093619144 @default.
- W4381839085 cites W2129841144 @default.
- W4381839085 cites W2166572577 @default.
- W4381839085 cites W2167279371 @default.
- W4381839085 cites W2275837766 @default.
- W4381839085 cites W2508982726 @default.
- W4381839085 cites W2538791563 @default.
- W4381839085 cites W2547009870 @default.
- W4381839085 cites W2566713214 @default.
- W4381839085 cites W2777773487 @default.
- W4381839085 cites W2778169119 @default.
- W4381839085 cites W2803890652 @default.
- W4381839085 cites W2885262064 @default.
- W4381839085 cites W2911964244 @default.
- W4381839085 cites W2914151288 @default.
- W4381839085 cites W2919115771 @default.
- W4381839085 cites W2944851606 @default.
- W4381839085 cites W2950990733 @default.
- W4381839085 cites W2951032685 @default.
- W4381839085 cites W2954728011 @default.
- W4381839085 cites W2963655134 @default.
- W4381839085 cites W2964012060 @default.
- W4381839085 cites W2964279578 @default.
- W4381839085 cites W2966242695 @default.
- W4381839085 cites W2970898057 @default.
- W4381839085 cites W3004510674 @default.
- W4381839085 cites W3008789792 @default.
- W4381839085 cites W3010073879 @default.
- W4381839085 cites W3015618497 @default.
- W4381839085 cites W3035039202 @default.
- W4381839085 cites W3042754124 @default.
- W4381839085 cites W3092184067 @default.
- W4381839085 cites W3102222242 @default.
- W4381839085 cites W3102476541 @default.
- W4381839085 cites W3109964950 @default.
- W4381839085 cites W3164407023 @default.
- W4381839085 cites W3174028649 @default.
- W4381839085 cites W3201191896 @default.
- W4381839085 cites W4200116910 @default.
- W4381839085 cites W4200268770 @default.
- W4381839085 cites W4200390590 @default.
- W4381839085 cites W4205278067 @default.
- W4381839085 cites W4207022980 @default.
- W4381839085 cites W4211208395 @default.
- W4381839085 cites W4211245039 @default.
- W4381839085 cites W4220866040 @default.
- W4381839085 cites W4229377226 @default.
- W4381839085 cites W4281823709 @default.
- W4381839085 cites W4281960892 @default.
- W4381839085 cites W4307966533 @default.
- W4381839085 cites W4318263306 @default.
- W4381839085 doi "https://doi.org/10.1371/journal.pone.0282549" @default.
- W4381839085 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37352195" @default.
- W4381839085 hasPublicationYear "2023" @default.
- W4381839085 type Work @default.
- W4381839085 citedByCount "0" @default.
- W4381839085 crossrefType "journal-article" @default.
- W4381839085 hasAuthorship W4381839085A5001012467 @default.
- W4381839085 hasAuthorship W4381839085A5005485312 @default.
- W4381839085 hasAuthorship W4381839085A5065379907 @default.
- W4381839085 hasAuthorship W4381839085A5085004017 @default.
- W4381839085 hasAuthorship W4381839085A5091902626 @default.
- W4381839085 hasBestOaLocation W43818390851 @default.
- W4381839085 hasConcept C119857082 @default.
- W4381839085 hasConcept C121332964 @default.
- W4381839085 hasConcept C125411270 @default.
- W4381839085 hasConcept C126838900 @default.
- W4381839085 hasConcept C142724271 @default.
- W4381839085 hasConcept C143409427 @default.
- W4381839085 hasConcept C149550507 @default.
- W4381839085 hasConcept C153180895 @default.
- W4381839085 hasConcept C154945302 @default.
- W4381839085 hasConcept C155281189 @default.
- W4381839085 hasConcept C2524010 @default.
- W4381839085 hasConcept C2779134260 @default.
- W4381839085 hasConcept C2780130745 @default.
- W4381839085 hasConcept C2781192897 @default.
- W4381839085 hasConcept C33923547 @default.
- W4381839085 hasConcept C41008148 @default.