Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381839189> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4381839189 endingPage "e0286862" @default.
- W4381839189 startingPage "e0286862" @default.
- W4381839189 abstract "Robust semantic segmentation of tumour micro-environment is one of the major open challenges in machine learning enabled computational pathology. Though deep learning based systems have made significant progress, their task agnostic data driven approach often lacks the contextual grounding necessary in biomedical applications. We present a novel fuzzy water flow scheme that takes the coarse segmentation output of a base deep learning framework to then provide a more fine-grained and instance level robust segmentation output. Our two stage synergistic segmentation method, Deep-Fuzz, works especially well for overlapping objects, and achieves state-of-the-art performance in four public cell nuclei segmentation datasets. We also show through visual examples how our final output is better aligned with pathological insights, and thus more clinically interpretable." @default.
- W4381839189 created "2023-06-25" @default.
- W4381839189 creator A5000210772 @default.
- W4381839189 creator A5043105133 @default.
- W4381839189 creator A5049571472 @default.
- W4381839189 creator A5051644353 @default.
- W4381839189 creator A5079988902 @default.
- W4381839189 date "2023-06-23" @default.
- W4381839189 modified "2023-10-18" @default.
- W4381839189 title "Deep-Fuzz: A synergistic integration of deep learning and fuzzy water flows for fine-grained nuclei segmentation in digital pathology" @default.
- W4381839189 cites W1901129140 @default.
- W4381839189 cites W1970120446 @default.
- W4381839189 cites W2007222931 @default.
- W4381839189 cites W2022818193 @default.
- W4381839189 cites W2057399676 @default.
- W4381839189 cites W2104448846 @default.
- W4381839189 cites W2120549843 @default.
- W4381839189 cites W2142332605 @default.
- W4381839189 cites W2175543269 @default.
- W4381839189 cites W2311537973 @default.
- W4381839189 cites W2329821483 @default.
- W4381839189 cites W2590478046 @default.
- W4381839189 cites W2592905743 @default.
- W4381839189 cites W2751723768 @default.
- W4381839189 cites W2921500370 @default.
- W4381839189 cites W2964309882 @default.
- W4381839189 cites W2996411522 @default.
- W4381839189 cites W3002719776 @default.
- W4381839189 cites W3046154346 @default.
- W4381839189 cites W3048399453 @default.
- W4381839189 cites W3084995528 @default.
- W4381839189 cites W3094071141 @default.
- W4381839189 cites W3107695429 @default.
- W4381839189 cites W3132455321 @default.
- W4381839189 cites W3172949220 @default.
- W4381839189 cites W4280494974 @default.
- W4381839189 cites W4312429056 @default.
- W4381839189 doi "https://doi.org/10.1371/journal.pone.0286862" @default.
- W4381839189 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37352172" @default.
- W4381839189 hasPublicationYear "2023" @default.
- W4381839189 type Work @default.
- W4381839189 citedByCount "0" @default.
- W4381839189 crossrefType "journal-article" @default.
- W4381839189 hasAuthorship W4381839189A5000210772 @default.
- W4381839189 hasAuthorship W4381839189A5043105133 @default.
- W4381839189 hasAuthorship W4381839189A5049571472 @default.
- W4381839189 hasAuthorship W4381839189A5051644353 @default.
- W4381839189 hasAuthorship W4381839189A5079988902 @default.
- W4381839189 hasBestOaLocation W43818391891 @default.
- W4381839189 hasConcept C108583219 @default.
- W4381839189 hasConcept C119857082 @default.
- W4381839189 hasConcept C153180895 @default.
- W4381839189 hasConcept C154945302 @default.
- W4381839189 hasConcept C162324750 @default.
- W4381839189 hasConcept C187736073 @default.
- W4381839189 hasConcept C2777522853 @default.
- W4381839189 hasConcept C2780451532 @default.
- W4381839189 hasConcept C41008148 @default.
- W4381839189 hasConcept C58166 @default.
- W4381839189 hasConcept C89600930 @default.
- W4381839189 hasConceptScore W4381839189C108583219 @default.
- W4381839189 hasConceptScore W4381839189C119857082 @default.
- W4381839189 hasConceptScore W4381839189C153180895 @default.
- W4381839189 hasConceptScore W4381839189C154945302 @default.
- W4381839189 hasConceptScore W4381839189C162324750 @default.
- W4381839189 hasConceptScore W4381839189C187736073 @default.
- W4381839189 hasConceptScore W4381839189C2777522853 @default.
- W4381839189 hasConceptScore W4381839189C2780451532 @default.
- W4381839189 hasConceptScore W4381839189C41008148 @default.
- W4381839189 hasConceptScore W4381839189C58166 @default.
- W4381839189 hasConceptScore W4381839189C89600930 @default.
- W4381839189 hasFunder F4320311980 @default.
- W4381839189 hasIssue "6" @default.
- W4381839189 hasLocation W43818391891 @default.
- W4381839189 hasLocation W43818391892 @default.
- W4381839189 hasLocation W43818391893 @default.
- W4381839189 hasOpenAccess W4381839189 @default.
- W4381839189 hasPrimaryLocation W43818391891 @default.
- W4381839189 hasRelatedWork W2790662084 @default.
- W4381839189 hasRelatedWork W3014300295 @default.
- W4381839189 hasRelatedWork W3164822677 @default.
- W4381839189 hasRelatedWork W4223943233 @default.
- W4381839189 hasRelatedWork W4225161397 @default.
- W4381839189 hasRelatedWork W4312200629 @default.
- W4381839189 hasRelatedWork W4360585206 @default.
- W4381839189 hasRelatedWork W4364306694 @default.
- W4381839189 hasRelatedWork W4380075502 @default.
- W4381839189 hasRelatedWork W4380086463 @default.
- W4381839189 hasVolume "18" @default.
- W4381839189 isParatext "false" @default.
- W4381839189 isRetracted "false" @default.
- W4381839189 workType "article" @default.