Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381848200> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4381848200 endingPage "102262" @default.
- W4381848200 startingPage "102262" @default.
- W4381848200 abstract "Floods are the most common natural disaster in several countries throughout the world. Flooding has a major impact on people's lives and livelihoods. The impact of flood disasters on human lives can be mitigated by developing effective flood forecasting and prediction models. The majority of flood prediction models do not take all flood-causing factors into account when they are designed. It is difficult to collect and handle some of these flood-causing variables since they are heterogeneous in nature. This paper presents a new big data architecture called Data Lake, which can ingest and store all important flood-causing heterogeneous data sources in their raw format for machine learning model creation. The statistical relevance of important flood producing factors on flood prediction outcome is determined utilizing inferential statistical approaches. The outcome of this research is to create flood warning systems that can alert the public and government officials so that they can make decisions in the event of a severe flood, reducing socioeconomic loss. •Flood causing factors are from heterogeneous sources, so there is no big data architecture for handling variety of data sources.•To provide data architectural solution using data lake for collecting and analysing heterogeneous flood causing factors.•Uses inferential statistical approach to determine importance of different flood causing factors in design of efficient flood prediction models." @default.
- W4381848200 created "2023-06-25" @default.
- W4381848200 creator A5063316692 @default.
- W4381848200 creator A5092250821 @default.
- W4381848200 creator A5092250822 @default.
- W4381848200 creator A5092250823 @default.
- W4381848200 date "2023-12-01" @default.
- W4381848200 modified "2023-09-28" @default.
- W4381848200 title "Design an efficient data driven decision support system to predict flooding by analysing heterogeneous and multiple data sources using Data Lake" @default.
- W4381848200 cites W2490053799 @default.
- W4381848200 cites W2616397538 @default.
- W4381848200 cites W2772049907 @default.
- W4381848200 cites W2773719488 @default.
- W4381848200 cites W2801385946 @default.
- W4381848200 cites W2883354997 @default.
- W4381848200 cites W2997836848 @default.
- W4381848200 cites W3174600615 @default.
- W4381848200 cites W3185492633 @default.
- W4381848200 cites W4206815250 @default.
- W4381848200 cites W4220969141 @default.
- W4381848200 doi "https://doi.org/10.1016/j.mex.2023.102262" @default.
- W4381848200 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37448950" @default.
- W4381848200 hasPublicationYear "2023" @default.
- W4381848200 type Work @default.
- W4381848200 citedByCount "0" @default.
- W4381848200 crossrefType "journal-article" @default.
- W4381848200 hasAuthorship W4381848200A5063316692 @default.
- W4381848200 hasAuthorship W4381848200A5092250821 @default.
- W4381848200 hasAuthorship W4381848200A5092250822 @default.
- W4381848200 hasAuthorship W4381848200A5092250823 @default.
- W4381848200 hasBestOaLocation W43818482001 @default.
- W4381848200 hasConcept C124101348 @default.
- W4381848200 hasConcept C132964779 @default.
- W4381848200 hasConcept C136197465 @default.
- W4381848200 hasConcept C154945302 @default.
- W4381848200 hasConcept C15744967 @default.
- W4381848200 hasConcept C166957645 @default.
- W4381848200 hasConcept C186594467 @default.
- W4381848200 hasConcept C199360897 @default.
- W4381848200 hasConcept C205649164 @default.
- W4381848200 hasConcept C2522767166 @default.
- W4381848200 hasConcept C2778924419 @default.
- W4381848200 hasConcept C41008148 @default.
- W4381848200 hasConcept C542102704 @default.
- W4381848200 hasConcept C74256435 @default.
- W4381848200 hasConcept C75684735 @default.
- W4381848200 hasConceptScore W4381848200C124101348 @default.
- W4381848200 hasConceptScore W4381848200C132964779 @default.
- W4381848200 hasConceptScore W4381848200C136197465 @default.
- W4381848200 hasConceptScore W4381848200C154945302 @default.
- W4381848200 hasConceptScore W4381848200C15744967 @default.
- W4381848200 hasConceptScore W4381848200C166957645 @default.
- W4381848200 hasConceptScore W4381848200C186594467 @default.
- W4381848200 hasConceptScore W4381848200C199360897 @default.
- W4381848200 hasConceptScore W4381848200C205649164 @default.
- W4381848200 hasConceptScore W4381848200C2522767166 @default.
- W4381848200 hasConceptScore W4381848200C2778924419 @default.
- W4381848200 hasConceptScore W4381848200C41008148 @default.
- W4381848200 hasConceptScore W4381848200C542102704 @default.
- W4381848200 hasConceptScore W4381848200C74256435 @default.
- W4381848200 hasConceptScore W4381848200C75684735 @default.
- W4381848200 hasLocation W43818482001 @default.
- W4381848200 hasLocation W43818482002 @default.
- W4381848200 hasLocation W43818482003 @default.
- W4381848200 hasOpenAccess W4381848200 @default.
- W4381848200 hasPrimaryLocation W43818482001 @default.
- W4381848200 hasRelatedWork W1543687422 @default.
- W4381848200 hasRelatedWork W2095258071 @default.
- W4381848200 hasRelatedWork W2892244564 @default.
- W4381848200 hasRelatedWork W2997869646 @default.
- W4381848200 hasRelatedWork W3215678666 @default.
- W4381848200 hasRelatedWork W4231725381 @default.
- W4381848200 hasRelatedWork W4281783369 @default.
- W4381848200 hasRelatedWork W997111777 @default.
- W4381848200 hasRelatedWork W2737538696 @default.
- W4381848200 hasRelatedWork W2802448954 @default.
- W4381848200 hasVolume "11" @default.
- W4381848200 isParatext "false" @default.
- W4381848200 isRetracted "false" @default.
- W4381848200 workType "article" @default.