Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381851458> ?p ?o ?g. }
- W4381851458 endingPage "121030" @default.
- W4381851458 startingPage "121030" @default.
- W4381851458 abstract "The uncertain cooling effect and additional huge primary energy consumption (EC) caused by humidity regulation are currently the main problems of traditional air-conditioning systems in sow houses. In this paper, a new spray cooling system (NSCS) is developed based on PV/T and heat recovery in sow houses. Compared with traditional spray cooling systems, the cooling efficiency of new system can be significantly improved due to solar dehumidification and its EC can be reduced due to PV/T and heat recovery. Meanwhile, the mathematical models are established for its key equipment and their reliability is verified according to literature data. The results show that the maximum error is less than 7.2 % for the models. Aiming at the maximum utilization rate of cooling and heating equipment, the annual operation modes are determined for NSCS based on the above models. The results show that cooling season is from May 21st to September 25th, heating season is from January 1st to March 16th and from November 1st to December 31st, and the transitional spring and autumn are from March 17th to May 20th and from September 26th to October 31st, respectively. Meanwhile, the optimal spray cooling power (SCP) and mass flow rate of circulating water (MFCW) are obtained by analyzing the operation characteristics of NSCS in cooling and heating seasons. The results show that in cooling and heating seasons, it is suggested to use the minimum ventilation required by sows (42763.5 kg/h) for the ventilation rate of NSCS. Meanwhile, the optimal SCP and MFCW are recommended as 40 kW and 12245 kg/h, respectively. Finally, the matching between exergy efficiency (EE) and EC is analyzed for NSCS in transition season through simulation. The operational control methods are further proposed for NSCS in transition season through optimization. The results show that in transition season, increasing mass flow rate of supply air (MFSA) and reducing equipment power are the operational control methods to obtain the optimal performance and minimum EC of NSCS. Specifically, in the transitional spring, the optimal MFSA, SCP and MFCW are recommended as 47812.0 kg/h, 30 kW and 10245 kg/h, respectively. In the transitional autumn, they are recommended as 55806.3 kg/h, 25 kW and 7245 kg/h, respectively. The above conclusions can provide new ideas for the development of new energy-saving air-conditioning systems in sow houses, and guide the operation control and performance optimization of NSCS." @default.
- W4381851458 created "2023-06-25" @default.
- W4381851458 creator A5020937100 @default.
- W4381851458 creator A5031930208 @default.
- W4381851458 creator A5039888456 @default.
- W4381851458 creator A5047967527 @default.
- W4381851458 creator A5071052608 @default.
- W4381851458 creator A5081975785 @default.
- W4381851458 creator A5091528011 @default.
- W4381851458 date "2023-09-01" @default.
- W4381851458 modified "2023-09-25" @default.
- W4381851458 title "Performance and optimization of a new spray cooling system with PV/T and heat recovery in sow houses: A case study in Nanchang, China" @default.
- W4381851458 cites W1976778946 @default.
- W4381851458 cites W1977493117 @default.
- W4381851458 cites W1980441163 @default.
- W4381851458 cites W1984071859 @default.
- W4381851458 cites W1992232111 @default.
- W4381851458 cites W2002630701 @default.
- W4381851458 cites W2008845411 @default.
- W4381851458 cites W2026023736 @default.
- W4381851458 cites W2026768798 @default.
- W4381851458 cites W2034340480 @default.
- W4381851458 cites W2070612399 @default.
- W4381851458 cites W2092650037 @default.
- W4381851458 cites W2116646870 @default.
- W4381851458 cites W2117226640 @default.
- W4381851458 cites W2278463507 @default.
- W4381851458 cites W2418467859 @default.
- W4381851458 cites W2514773355 @default.
- W4381851458 cites W2561658627 @default.
- W4381851458 cites W2599521329 @default.
- W4381851458 cites W2750316673 @default.
- W4381851458 cites W2766168865 @default.
- W4381851458 cites W2791873388 @default.
- W4381851458 cites W2796115721 @default.
- W4381851458 cites W2886484195 @default.
- W4381851458 cites W2887104812 @default.
- W4381851458 cites W2892142184 @default.
- W4381851458 cites W2900191422 @default.
- W4381851458 cites W2907863330 @default.
- W4381851458 cites W2953774026 @default.
- W4381851458 cites W3004828964 @default.
- W4381851458 cites W3007531241 @default.
- W4381851458 cites W3043163607 @default.
- W4381851458 cites W3099227690 @default.
- W4381851458 cites W3110225572 @default.
- W4381851458 cites W3119541845 @default.
- W4381851458 cites W3132318826 @default.
- W4381851458 cites W3152950850 @default.
- W4381851458 cites W3180092493 @default.
- W4381851458 cites W3211003803 @default.
- W4381851458 cites W3213565770 @default.
- W4381851458 cites W4221098863 @default.
- W4381851458 cites W4224302346 @default.
- W4381851458 cites W4226193956 @default.
- W4381851458 cites W4280507743 @default.
- W4381851458 cites W4280532558 @default.
- W4381851458 cites W4283461374 @default.
- W4381851458 doi "https://doi.org/10.1016/j.applthermaleng.2023.121030" @default.
- W4381851458 hasPublicationYear "2023" @default.
- W4381851458 type Work @default.
- W4381851458 citedByCount "0" @default.
- W4381851458 crossrefType "journal-article" @default.
- W4381851458 hasAuthorship W4381851458A5020937100 @default.
- W4381851458 hasAuthorship W4381851458A5031930208 @default.
- W4381851458 hasAuthorship W4381851458A5039888456 @default.
- W4381851458 hasAuthorship W4381851458A5047967527 @default.
- W4381851458 hasAuthorship W4381851458A5071052608 @default.
- W4381851458 hasAuthorship W4381851458A5081975785 @default.
- W4381851458 hasAuthorship W4381851458A5091528011 @default.
- W4381851458 hasConcept C116915560 @default.
- W4381851458 hasConcept C121332964 @default.
- W4381851458 hasConcept C127413603 @default.
- W4381851458 hasConcept C153294291 @default.
- W4381851458 hasConcept C158960510 @default.
- W4381851458 hasConcept C200457457 @default.
- W4381851458 hasConcept C205649164 @default.
- W4381851458 hasConcept C39432304 @default.
- W4381851458 hasConcept C548081761 @default.
- W4381851458 hasConcept C75892298 @default.
- W4381851458 hasConcept C7694927 @default.
- W4381851458 hasConcept C78519656 @default.
- W4381851458 hasConcept C87717796 @default.
- W4381851458 hasConcept C97355855 @default.
- W4381851458 hasConceptScore W4381851458C116915560 @default.
- W4381851458 hasConceptScore W4381851458C121332964 @default.
- W4381851458 hasConceptScore W4381851458C127413603 @default.
- W4381851458 hasConceptScore W4381851458C153294291 @default.
- W4381851458 hasConceptScore W4381851458C158960510 @default.
- W4381851458 hasConceptScore W4381851458C200457457 @default.
- W4381851458 hasConceptScore W4381851458C205649164 @default.
- W4381851458 hasConceptScore W4381851458C39432304 @default.
- W4381851458 hasConceptScore W4381851458C548081761 @default.
- W4381851458 hasConceptScore W4381851458C75892298 @default.
- W4381851458 hasConceptScore W4381851458C7694927 @default.
- W4381851458 hasConceptScore W4381851458C78519656 @default.
- W4381851458 hasConceptScore W4381851458C87717796 @default.
- W4381851458 hasConceptScore W4381851458C97355855 @default.