Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381852326> ?p ?o ?g. }
- W4381852326 abstract "Abstract In this study, different process types were processed on Hardox 400 steel. These processes were carried out with five different samples as heat treatment, cold forging, plasma welding, mig-mag welding and commercial sample. The aim here is to determine the changes in properties such as microstructure, microhardness and conductivity that occur in the structure of hardox 400 steel when exposed to different processes. Then, the samples affected by these changes were processed in WEDM with the box-behnken experimental design. Ra, Kerf, MRR and WWR results were analyzed in Minitab 21 program. In the continuation of the study, using these data, a prediction models were created for Ra, Kerf, MRR and WWR with DL and ELM. Anaconda program Python 3.9 version was used as a program in the optimization study. In addition, a linear regression models are presented to comparison the results. According to the results the lowest Ra values were obtained in heat-treated, cold forged, master sample, plasma welded and mig-mag welded processes, respectively. Model F value in ANOVA analysis for Ra is 86,04. Model for Ra r 2 value was obtained as 0.9534. The lowest kerf values were obtained in heat-treated, cold forged, master sample, plasma welded and mig-mag welded processes, respectively. Model F value in ANOVA analysis for Kerf is 90,21. Model for Kerf r 2 value was obtained as 0.9555. Contrary to Ra and Kerf, it is desirable to have high MRR values. On average, the highest MRR values were obtained in mig-mag welded, plasma welded, cold forged, master sample and heat-treated processes, respectively. Model for MRR r 2 value was obtained as 0.9563. The lowest WWR values were obtained in heat-treated, cold forged, master sample, plasma welded and mig-mag welded processes, respectively. Model F value in ANOVA analysis for WWR is 92.12. Model for Kerf wwr r 2 value was obtained as 0.09561. In the analysis made with artificial intelligence systems; the best test MSE value for Ra was obtained as 0.0093 in DL and the r squared value 0.9439. The best test MSE value for Kerf was obtained as 248.28 in ELM and r squared value 0.8676. The best MSE value for MRR was obtained as 0.000144 in DL and the r squared value 0.9209. The best MSE value for WWR was obtained as 0.000073 in DL and the r squared value 0.8382. As a result, it was concluded that different optimization methods can be applied according to different outputs (Ra, Kerf, MRR, WWR). It also shows that artificial intelligence-based optimization methods give successful estimation results about Ra, Kerf, MRR, WWR values. According to these results, ideal DL and ELM models have been presented for future studies." @default.
- W4381852326 created "2023-06-25" @default.
- W4381852326 creator A5029888942 @default.
- W4381852326 creator A5081689009 @default.
- W4381852326 date "2023-06-24" @default.
- W4381852326 modified "2023-09-27" @default.
- W4381852326 title "Optimization with artificial intelligence of the machinability of Hardox steel, which is exposed to different processes" @default.
- W4381852326 cites W1520795727 @default.
- W4381852326 cites W1781857629 @default.
- W4381852326 cites W1974541664 @default.
- W4381852326 cites W1979332373 @default.
- W4381852326 cites W1997847557 @default.
- W4381852326 cites W2010729436 @default.
- W4381852326 cites W2015550419 @default.
- W4381852326 cites W2040651161 @default.
- W4381852326 cites W2055563111 @default.
- W4381852326 cites W2060600711 @default.
- W4381852326 cites W2089249762 @default.
- W4381852326 cites W2097117768 @default.
- W4381852326 cites W2104603416 @default.
- W4381852326 cites W2121971770 @default.
- W4381852326 cites W2192932403 @default.
- W4381852326 cites W2291661549 @default.
- W4381852326 cites W245099413 @default.
- W4381852326 cites W2514564924 @default.
- W4381852326 cites W2750176790 @default.
- W4381852326 cites W2773444615 @default.
- W4381852326 cites W2796672611 @default.
- W4381852326 cites W2803091414 @default.
- W4381852326 cites W2895444991 @default.
- W4381852326 cites W2909096226 @default.
- W4381852326 cites W2912392993 @default.
- W4381852326 cites W2915045717 @default.
- W4381852326 cites W2921519599 @default.
- W4381852326 cites W2938736450 @default.
- W4381852326 cites W2942047241 @default.
- W4381852326 cites W2952181634 @default.
- W4381852326 cites W2963037989 @default.
- W4381852326 cites W2965386032 @default.
- W4381852326 cites W2996149946 @default.
- W4381852326 cites W3000983008 @default.
- W4381852326 cites W3024889357 @default.
- W4381852326 cites W3027507763 @default.
- W4381852326 cites W3030340432 @default.
- W4381852326 cites W3041632065 @default.
- W4381852326 cites W3042451133 @default.
- W4381852326 cites W3087978733 @default.
- W4381852326 cites W3088162140 @default.
- W4381852326 cites W3088834512 @default.
- W4381852326 cites W3096157705 @default.
- W4381852326 cites W3101883705 @default.
- W4381852326 cites W3102605242 @default.
- W4381852326 cites W3109274689 @default.
- W4381852326 cites W3119558728 @default.
- W4381852326 cites W3129574695 @default.
- W4381852326 cites W3133173025 @default.
- W4381852326 cites W3134660842 @default.
- W4381852326 cites W3155732797 @default.
- W4381852326 cites W3163303634 @default.
- W4381852326 cites W3175424420 @default.
- W4381852326 cites W3183656563 @default.
- W4381852326 cites W3183900226 @default.
- W4381852326 cites W3188120487 @default.
- W4381852326 cites W3199878332 @default.
- W4381852326 cites W3202037628 @default.
- W4381852326 cites W3207672850 @default.
- W4381852326 cites W3212135938 @default.
- W4381852326 cites W4200333072 @default.
- W4381852326 cites W4205133582 @default.
- W4381852326 cites W4220931018 @default.
- W4381852326 cites W4221079468 @default.
- W4381852326 cites W4229028185 @default.
- W4381852326 cites W4229077450 @default.
- W4381852326 cites W4245320202 @default.
- W4381852326 cites W4281784047 @default.
- W4381852326 cites W4285384523 @default.
- W4381852326 cites W4290790660 @default.
- W4381852326 cites W4293385549 @default.
- W4381852326 cites W4296779620 @default.
- W4381852326 cites W4302362963 @default.
- W4381852326 cites W4309567315 @default.
- W4381852326 doi "https://doi.org/10.21203/rs.3.rs-3001915/v1" @default.
- W4381852326 hasPublicationYear "2023" @default.
- W4381852326 type Work @default.
- W4381852326 citedByCount "0" @default.
- W4381852326 crossrefType "posted-content" @default.
- W4381852326 hasAuthorship W4381852326A5029888942 @default.
- W4381852326 hasAuthorship W4381852326A5081689009 @default.
- W4381852326 hasBestOaLocation W43818523261 @default.
- W4381852326 hasConcept C159985019 @default.
- W4381852326 hasConcept C165720898 @default.
- W4381852326 hasConcept C191897082 @default.
- W4381852326 hasConcept C192562407 @default.
- W4381852326 hasConcept C19474535 @default.
- W4381852326 hasConcept C2775926494 @default.
- W4381852326 hasConcept C523214423 @default.
- W4381852326 hasConcept C87976508 @default.
- W4381852326 hasConcept C96494537 @default.
- W4381852326 hasConceptScore W4381852326C159985019 @default.
- W4381852326 hasConceptScore W4381852326C165720898 @default.