Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381853232> ?p ?o ?g. }
- W4381853232 endingPage "795" @default.
- W4381853232 startingPage "785" @default.
- W4381853232 abstract "Whilst survival in paediatric critical care has improved, clinicians lack tools capable of predicting long-term outcomes. We developed a machine learning model to predict poor school outcomes in children surviving intensive care unit (ICU). Population-based study of children < 16 years requiring ICU admission in Queensland, Australia, between 1997 and 2019. Failure to meet the National Minimum Standard (NMS) in the National Assessment Program-Literacy and Numeracy (NAPLAN) assessment during primary and secondary school was the primary outcome. Routine ICU information was used to train machine learning classifiers. Models were trained, validated and tested using stratified nested cross-validation. 13,957 childhood ICU survivors with 37,200 corresponding NAPLAN tests after a median follow-up duration of 6 years were included. 14.7%, 17%, 15.6% and 16.6% failed to meet NMS in school grades 3, 5, 7 and 9. The model demonstrated an Area Under the Receiver Operating Characteristic curve (AUROC) of 0.8 (standard deviation SD, 0.01), with 51% specificity to reach 85% sensitivity [relative Area Under the Precision Recall Curve (rel-AUPRC) 3.42, SD 0.06]. Socio-economic status, illness severity, and neurological, congenital, and genetic disorders contributed most to the predictions. In children with no comorbidities admitted between 2009 and 2019, the model achieved a AUROC of 0.77 (SD 0.03) and a rel-AUPRC of 3.31 (SD 0.42). A machine learning model using data available at time of ICU discharge predicted failure to meet minimum educational requirements at school age. Implementation of this prediction tool could assist in prioritizing patients for follow-up and targeting of rehabilitative measures." @default.
- W4381853232 created "2023-06-25" @default.
- W4381853232 creator A5001479406 @default.
- W4381853232 creator A5001968208 @default.
- W4381853232 creator A5004411255 @default.
- W4381853232 creator A5014497315 @default.
- W4381853232 creator A5016834022 @default.
- W4381853232 creator A5026017616 @default.
- W4381853232 creator A5034064885 @default.
- W4381853232 creator A5036036393 @default.
- W4381853232 creator A5037429277 @default.
- W4381853232 creator A5038778407 @default.
- W4381853232 creator A5044178845 @default.
- W4381853232 creator A5048056550 @default.
- W4381853232 creator A5049833661 @default.
- W4381853232 creator A5051356763 @default.
- W4381853232 creator A5051540200 @default.
- W4381853232 creator A5051862930 @default.
- W4381853232 creator A5052479150 @default.
- W4381853232 creator A5054121550 @default.
- W4381853232 creator A5054503242 @default.
- W4381853232 creator A5056024965 @default.
- W4381853232 creator A5058775884 @default.
- W4381853232 creator A5060373564 @default.
- W4381853232 creator A5072136772 @default.
- W4381853232 creator A5083886083 @default.
- W4381853232 creator A5089383047 @default.
- W4381853232 date "2023-06-24" @default.
- W4381853232 modified "2023-09-28" @default.
- W4381853232 title "Machine learning to predict poor school performance in paediatric survivors of intensive care: a population-based cohort study" @default.
- W4381853232 cites W2015765903 @default.
- W4381853232 cites W2019049913 @default.
- W4381853232 cites W2019694480 @default.
- W4381853232 cites W2022720070 @default.
- W4381853232 cites W2043405016 @default.
- W4381853232 cites W2088472932 @default.
- W4381853232 cites W2090643403 @default.
- W4381853232 cites W2105895381 @default.
- W4381853232 cites W2111265958 @default.
- W4381853232 cites W2187417910 @default.
- W4381853232 cites W2208766244 @default.
- W4381853232 cites W2319120476 @default.
- W4381853232 cites W2494987773 @default.
- W4381853232 cites W2517752728 @default.
- W4381853232 cites W2547436449 @default.
- W4381853232 cites W2585915213 @default.
- W4381853232 cites W2590538937 @default.
- W4381853232 cites W2592750454 @default.
- W4381853232 cites W2624425617 @default.
- W4381853232 cites W2762508685 @default.
- W4381853232 cites W2765179396 @default.
- W4381853232 cites W2787894218 @default.
- W4381853232 cites W2802668759 @default.
- W4381853232 cites W2911964244 @default.
- W4381853232 cites W2935871149 @default.
- W4381853232 cites W2954152287 @default.
- W4381853232 cites W2995296037 @default.
- W4381853232 cites W3006332127 @default.
- W4381853232 cites W3012304206 @default.
- W4381853232 cites W3019168440 @default.
- W4381853232 cites W3037772652 @default.
- W4381853232 cites W3047686143 @default.
- W4381853232 cites W3163951431 @default.
- W4381853232 cites W3164057767 @default.
- W4381853232 cites W3191411465 @default.
- W4381853232 cites W4206004093 @default.
- W4381853232 cites W4212925874 @default.
- W4381853232 cites W4214603305 @default.
- W4381853232 cites W4214632879 @default.
- W4381853232 cites W4214703289 @default.
- W4381853232 cites W4229013480 @default.
- W4381853232 cites W4245356720 @default.
- W4381853232 cites W4250658309 @default.
- W4381853232 cites W4283578215 @default.
- W4381853232 cites W4285719527 @default.
- W4381853232 cites W4288066123 @default.
- W4381853232 cites W4292549454 @default.
- W4381853232 cites W4312179083 @default.
- W4381853232 cites W4362208313 @default.
- W4381853232 cites W95065353 @default.
- W4381853232 cites W2582595403 @default.
- W4381853232 doi "https://doi.org/10.1007/s00134-023-07137-1" @default.
- W4381853232 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37354231" @default.
- W4381853232 hasPublicationYear "2023" @default.
- W4381853232 type Work @default.
- W4381853232 citedByCount "0" @default.
- W4381853232 crossrefType "journal-article" @default.
- W4381853232 hasAuthorship W4381853232A5001479406 @default.
- W4381853232 hasAuthorship W4381853232A5001968208 @default.
- W4381853232 hasAuthorship W4381853232A5004411255 @default.
- W4381853232 hasAuthorship W4381853232A5014497315 @default.
- W4381853232 hasAuthorship W4381853232A5016834022 @default.
- W4381853232 hasAuthorship W4381853232A5026017616 @default.
- W4381853232 hasAuthorship W4381853232A5034064885 @default.
- W4381853232 hasAuthorship W4381853232A5036036393 @default.
- W4381853232 hasAuthorship W4381853232A5037429277 @default.
- W4381853232 hasAuthorship W4381853232A5038778407 @default.
- W4381853232 hasAuthorship W4381853232A5044178845 @default.