Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381884103> ?p ?o ?g. }
- W4381884103 endingPage "63622" @default.
- W4381884103 startingPage "63612" @default.
- W4381884103 abstract "Traditional fault classification methods typically rely on manual feature extraction and the application of machine-learning algorithms. However, these approaches encounter difficulties when extracting features and handling large-scale datasets. This study proposes a data preprocessing method for accurately detecting various types of short-circuit faults in power systems, which can lead to more effective power repair and maintenance processes. The proposed method involves converting the measured voltage and current signals into time and frequency domains using the short-time Fourier transform (STFT) to produce a time-frequency energy map. A convolutional neural network (CNN) is subsequently trained and tested to classify the short-circuit faults. However, overfitting may occur during the CNN training process owing to the large volume of data with similar features. To address this issue, this study proposes a data reduction method based on the fast dynamic time warping (Fast-DTW) algorithm, which compares waveform features and eliminates highly similar data regarded as redundant data from the dataset. The simulation results show that the proposed method can improve the model training performance and its adaptability to different power system topologies, as tested in two simulation environments: power systems computer-aided design (PSCAD)/electromagnetic transients, including DC (EMTDC), and the real-time digital simulator (RTDS). The STFT transformation is implemented in MATLAB. The simulation results demonstrate that the proposed method reduces redundant data by 40.2%, while decreasing the model training time. Consequently, the overall accuracy of the fault classification reaches 99.37%, confirming the effectiveness of the proposed method for fault classification." @default.
- W4381884103 created "2023-06-25" @default.
- W4381884103 creator A5062878528 @default.
- W4381884103 creator A5087171863 @default.
- W4381884103 date "2023-01-01" @default.
- W4381884103 modified "2023-09-27" @default.
- W4381884103 title "Fault Classification in Distribution Systems Using Deep Learning With Data Preprocessing Methods Based on Fast Dynamic Time Warping and Short-Time Fourier Transform" @default.
- W4381884103 cites W1829376396 @default.
- W4381884103 cites W2008348094 @default.
- W4381884103 cites W2027537551 @default.
- W4381884103 cites W2144994235 @default.
- W4381884103 cites W2344705789 @default.
- W4381884103 cites W2619363936 @default.
- W4381884103 cites W2768866948 @default.
- W4381884103 cites W2794042936 @default.
- W4381884103 cites W2930563906 @default.
- W4381884103 cites W2940908842 @default.
- W4381884103 cites W2943505802 @default.
- W4381884103 cites W2969600103 @default.
- W4381884103 cites W3011148068 @default.
- W4381884103 cites W3024527458 @default.
- W4381884103 cites W3059503398 @default.
- W4381884103 cites W3088922629 @default.
- W4381884103 cites W3097239744 @default.
- W4381884103 cites W3097285095 @default.
- W4381884103 cites W3106823864 @default.
- W4381884103 cites W3132448432 @default.
- W4381884103 cites W3135964818 @default.
- W4381884103 cites W4206203292 @default.
- W4381884103 cites W4212946700 @default.
- W4381884103 cites W4224302837 @default.
- W4381884103 cites W4283829463 @default.
- W4381884103 cites W4290043189 @default.
- W4381884103 cites W4309577008 @default.
- W4381884103 cites W4311903141 @default.
- W4381884103 doi "https://doi.org/10.1109/access.2023.3288852" @default.
- W4381884103 hasPublicationYear "2023" @default.
- W4381884103 type Work @default.
- W4381884103 citedByCount "0" @default.
- W4381884103 crossrefType "journal-article" @default.
- W4381884103 hasAuthorship W4381884103A5062878528 @default.
- W4381884103 hasAuthorship W4381884103A5087171863 @default.
- W4381884103 hasBestOaLocation W43818841031 @default.
- W4381884103 hasConcept C102519508 @default.
- W4381884103 hasConcept C10551718 @default.
- W4381884103 hasConcept C11413529 @default.
- W4381884103 hasConcept C127313418 @default.
- W4381884103 hasConcept C134306372 @default.
- W4381884103 hasConcept C153180895 @default.
- W4381884103 hasConcept C154945302 @default.
- W4381884103 hasConcept C165205528 @default.
- W4381884103 hasConcept C166386157 @default.
- W4381884103 hasConcept C175551986 @default.
- W4381884103 hasConcept C203024314 @default.
- W4381884103 hasConcept C22019652 @default.
- W4381884103 hasConcept C33923547 @default.
- W4381884103 hasConcept C41008148 @default.
- W4381884103 hasConcept C50644808 @default.
- W4381884103 hasConcept C52622490 @default.
- W4381884103 hasConcept C75172450 @default.
- W4381884103 hasConcept C81363708 @default.
- W4381884103 hasConcept C88516994 @default.
- W4381884103 hasConceptScore W4381884103C102519508 @default.
- W4381884103 hasConceptScore W4381884103C10551718 @default.
- W4381884103 hasConceptScore W4381884103C11413529 @default.
- W4381884103 hasConceptScore W4381884103C127313418 @default.
- W4381884103 hasConceptScore W4381884103C134306372 @default.
- W4381884103 hasConceptScore W4381884103C153180895 @default.
- W4381884103 hasConceptScore W4381884103C154945302 @default.
- W4381884103 hasConceptScore W4381884103C165205528 @default.
- W4381884103 hasConceptScore W4381884103C166386157 @default.
- W4381884103 hasConceptScore W4381884103C175551986 @default.
- W4381884103 hasConceptScore W4381884103C203024314 @default.
- W4381884103 hasConceptScore W4381884103C22019652 @default.
- W4381884103 hasConceptScore W4381884103C33923547 @default.
- W4381884103 hasConceptScore W4381884103C41008148 @default.
- W4381884103 hasConceptScore W4381884103C50644808 @default.
- W4381884103 hasConceptScore W4381884103C52622490 @default.
- W4381884103 hasConceptScore W4381884103C75172450 @default.
- W4381884103 hasConceptScore W4381884103C81363708 @default.
- W4381884103 hasConceptScore W4381884103C88516994 @default.
- W4381884103 hasFunder F4320307110 @default.
- W4381884103 hasFunder F4320331164 @default.
- W4381884103 hasLocation W43818841031 @default.
- W4381884103 hasOpenAccess W4381884103 @default.
- W4381884103 hasPrimaryLocation W43818841031 @default.
- W4381884103 hasRelatedWork W2146076056 @default.
- W4381884103 hasRelatedWork W2767651786 @default.
- W4381884103 hasRelatedWork W2811390910 @default.
- W4381884103 hasRelatedWork W2913302899 @default.
- W4381884103 hasRelatedWork W3012393889 @default.
- W4381884103 hasRelatedWork W3081496756 @default.
- W4381884103 hasRelatedWork W3127819136 @default.
- W4381884103 hasRelatedWork W4220996320 @default.
- W4381884103 hasRelatedWork W4312376745 @default.
- W4381884103 hasRelatedWork W785854688 @default.
- W4381884103 hasVolume "11" @default.
- W4381884103 isParatext "false" @default.