Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381885508> ?p ?o ?g. }
- W4381885508 abstract "Purpose This systematic review aimed to (1) determine the model performance of artificial intelligence (AI) in detecting rotator cuff pathology using different imaging modalities and (2) to compare capability with physicians in clinical scenarios. Methods The review followed the PRISMA guidelines and was registered on PROSPERO. The criteria were as follows: (1) studies on the application of AI in detecting rotator cuff pathology using medical images, and (2) studies on smart devices for assisting in diagnosis were excluded. The following data were extracted and recorded: statistical characteristics, input features, AI algorithms used, sample sizes of training and testing sets, and model performance. The data extracted from the included studies were narratively reviewed. Results A total of 14 articles, comprising 23,119 patients, met the inclusion and exclusion criteria. The pooled mean age of the patients was 56.7 years, and the female rate was 56.1%. The area under the curve (AUC) of the algorithmic model to detect rotator cuff pathology from ultrasound images, MRI images, and radiographic series ranged from 0.789 to 0.950, 0.844 to 0.943, and 0.820 to 0.830, respectively. Notably, 1 of the studies reported that AI models based on ultrasound images demonstrated a diagnostic performance similar to that of radiologists. Another comparative study demonstrated that AI models utilizing MRI images exhibited greater accuracy and specificity compared to orthopedic surgeons in the diagnosis of rotator cuff pathology, albeit not in sensitivity. Conclusion The detection of rotator cuff pathology has been significantly aided by the exceptional performance of AI models. In particular, these models are equally adept as musculoskeletal radiologists in utilizing ultrasound to diagnose rotator cuff pathology. Furthermore, AI models exhibit statistically superior levels of accuracy and specificity when utilizing MRI to diagnose rotator cuff pathology, albeit with no marked difference in sensitivity, in comparison to orthopaedic surgeons." @default.
- W4381885508 created "2023-06-25" @default.
- W4381885508 creator A5001892867 @default.
- W4381885508 creator A5017004405 @default.
- W4381885508 creator A5021386080 @default.
- W4381885508 creator A5031598662 @default.
- W4381885508 creator A5046235309 @default.
- W4381885508 creator A5082210090 @default.
- W4381885508 creator A5085018532 @default.
- W4381885508 creator A5085965166 @default.
- W4381885508 creator A5087996121 @default.
- W4381885508 creator A5091768873 @default.
- W4381885508 date "2023-06-01" @default.
- W4381885508 modified "2023-10-16" @default.
- W4381885508 title "Artificial Intelligence Aids Detection of Rotator Cuff Pathology: A Systematic Review" @default.
- W4381885508 cites W1981228003 @default.
- W4381885508 cites W1983112163 @default.
- W4381885508 cites W2000431435 @default.
- W4381885508 cites W2005501262 @default.
- W4381885508 cites W2021092059 @default.
- W4381885508 cites W2023320381 @default.
- W4381885508 cites W2038108897 @default.
- W4381885508 cites W2108001355 @default.
- W4381885508 cites W2123797201 @default.
- W4381885508 cites W2139184108 @default.
- W4381885508 cites W2157995113 @default.
- W4381885508 cites W2166507657 @default.
- W4381885508 cites W2464801492 @default.
- W4381885508 cites W2475182958 @default.
- W4381885508 cites W2779051611 @default.
- W4381885508 cites W2897228760 @default.
- W4381885508 cites W2919115771 @default.
- W4381885508 cites W2920972911 @default.
- W4381885508 cites W2927351257 @default.
- W4381885508 cites W2956226132 @default.
- W4381885508 cites W2979668754 @default.
- W4381885508 cites W3004446882 @default.
- W4381885508 cites W3004889343 @default.
- W4381885508 cites W3044153331 @default.
- W4381885508 cites W3080187696 @default.
- W4381885508 cites W3087523897 @default.
- W4381885508 cites W3088878453 @default.
- W4381885508 cites W3128861789 @default.
- W4381885508 cites W3161416104 @default.
- W4381885508 cites W3170094116 @default.
- W4381885508 cites W3184996131 @default.
- W4381885508 cites W4200500641 @default.
- W4381885508 cites W4205164650 @default.
- W4381885508 cites W4206577958 @default.
- W4381885508 cites W4212982698 @default.
- W4381885508 cites W4220962366 @default.
- W4381885508 cites W4224069160 @default.
- W4381885508 cites W4246121483 @default.
- W4381885508 cites W4280530455 @default.
- W4381885508 cites W4283581997 @default.
- W4381885508 cites W4283827049 @default.
- W4381885508 cites W4289169390 @default.
- W4381885508 cites W4290099075 @default.
- W4381885508 cites W4294193446 @default.
- W4381885508 cites W4294912190 @default.
- W4381885508 cites W4297259465 @default.
- W4381885508 cites W4309866943 @default.
- W4381885508 cites W4321370491 @default.
- W4381885508 doi "https://doi.org/10.1016/j.arthro.2023.06.018" @default.
- W4381885508 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37355191" @default.
- W4381885508 hasPublicationYear "2023" @default.
- W4381885508 type Work @default.
- W4381885508 citedByCount "2" @default.
- W4381885508 countsByYear W43818855082023 @default.
- W4381885508 crossrefType "journal-article" @default.
- W4381885508 hasAuthorship W4381885508A5001892867 @default.
- W4381885508 hasAuthorship W4381885508A5017004405 @default.
- W4381885508 hasAuthorship W4381885508A5021386080 @default.
- W4381885508 hasAuthorship W4381885508A5031598662 @default.
- W4381885508 hasAuthorship W4381885508A5046235309 @default.
- W4381885508 hasAuthorship W4381885508A5082210090 @default.
- W4381885508 hasAuthorship W4381885508A5085018532 @default.
- W4381885508 hasAuthorship W4381885508A5085965166 @default.
- W4381885508 hasAuthorship W4381885508A5087996121 @default.
- W4381885508 hasAuthorship W4381885508A5091768873 @default.
- W4381885508 hasConcept C126838900 @default.
- W4381885508 hasConcept C141071460 @default.
- W4381885508 hasConcept C142724271 @default.
- W4381885508 hasConcept C143409427 @default.
- W4381885508 hasConcept C144024400 @default.
- W4381885508 hasConcept C19527891 @default.
- W4381885508 hasConcept C2776511800 @default.
- W4381885508 hasConcept C2779903281 @default.
- W4381885508 hasConcept C36289849 @default.
- W4381885508 hasConcept C68312169 @default.
- W4381885508 hasConcept C71924100 @default.
- W4381885508 hasConceptScore W4381885508C126838900 @default.
- W4381885508 hasConceptScore W4381885508C141071460 @default.
- W4381885508 hasConceptScore W4381885508C142724271 @default.
- W4381885508 hasConceptScore W4381885508C143409427 @default.
- W4381885508 hasConceptScore W4381885508C144024400 @default.
- W4381885508 hasConceptScore W4381885508C19527891 @default.
- W4381885508 hasConceptScore W4381885508C2776511800 @default.
- W4381885508 hasConceptScore W4381885508C2779903281 @default.
- W4381885508 hasConceptScore W4381885508C36289849 @default.