Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381888453> ?p ?o ?g. }
- W4381888453 abstract "We present a new approach, the Topograph, which reconstructs underlying physics processes, including the intermediary particles, by leveraging underlying priors from the nature of particle physics decays and the flexibility of message passing graph neural networks. The Topograph not only solves the combinatoric assignment of observed final state objects, associating them to their original mother particles, but directly predicts the properties of intermediate particles in hard scatter processes and their subsequent decays. In comparison to standard combinatoric approaches or modern approaches using graph neural networks, which scale exponentially or quadratically, the complexity of Topographs scales linearly with the number of reconstructed objects. We apply Topographs to top quark pair production in the all hadronic decay channel, where we outperform the standard approach and match the performance of the state-of-the-art machine learning technique." @default.
- W4381888453 created "2023-06-25" @default.
- W4381888453 creator A5019324032 @default.
- W4381888453 creator A5043173542 @default.
- W4381888453 creator A5049299476 @default.
- W4381888453 creator A5075757240 @default.
- W4381888453 creator A5078664084 @default.
- W4381888453 date "2023-06-23" @default.
- W4381888453 modified "2023-10-17" @default.
- W4381888453 title "Topological reconstruction of particle physics processes using graph neural networks" @default.
- W4381888453 cites W1987435915 @default.
- W4381888453 cites W1995247032 @default.
- W4381888453 cites W1995546081 @default.
- W4381888453 cites W2060363676 @default.
- W4381888453 cites W2102244268 @default.
- W4381888453 cites W2110999179 @default.
- W4381888453 cites W2143950296 @default.
- W4381888453 cites W2148913369 @default.
- W4381888453 cites W2163097950 @default.
- W4381888453 cites W2164421140 @default.
- W4381888453 cites W2181158494 @default.
- W4381888453 cites W2263661321 @default.
- W4381888453 cites W2535940026 @default.
- W4381888453 cites W2596766270 @default.
- W4381888453 cites W2784642846 @default.
- W4381888453 cites W2794612391 @default.
- W4381888453 cites W2808019650 @default.
- W4381888453 cites W2894606456 @default.
- W4381888453 cites W2915621743 @default.
- W4381888453 cites W2923088797 @default.
- W4381888453 cites W2944281134 @default.
- W4381888453 cites W2971472959 @default.
- W4381888453 cites W3002851826 @default.
- W4381888453 cites W3042132278 @default.
- W4381888453 cites W3049760802 @default.
- W4381888453 cites W3092470512 @default.
- W4381888453 cites W3093022628 @default.
- W4381888453 cites W3101073376 @default.
- W4381888453 cites W3101617500 @default.
- W4381888453 cites W3107320099 @default.
- W4381888453 cites W3121614399 @default.
- W4381888453 cites W3122543598 @default.
- W4381888453 cites W3122710918 @default.
- W4381888453 cites W3131154467 @default.
- W4381888453 cites W3134779028 @default.
- W4381888453 cites W3175107109 @default.
- W4381888453 cites W3194947106 @default.
- W4381888453 cites W3211612862 @default.
- W4381888453 cites W3217268717 @default.
- W4381888453 cites W4210257598 @default.
- W4381888453 cites W4221140049 @default.
- W4381888453 cites W4224117076 @default.
- W4381888453 cites W4281770097 @default.
- W4381888453 cites W4284673612 @default.
- W4381888453 doi "https://doi.org/10.1103/physrevd.107.116019" @default.
- W4381888453 hasPublicationYear "2023" @default.
- W4381888453 type Work @default.
- W4381888453 citedByCount "1" @default.
- W4381888453 countsByYear W43818884532023 @default.
- W4381888453 crossrefType "journal-article" @default.
- W4381888453 hasAuthorship W4381888453A5019324032 @default.
- W4381888453 hasAuthorship W4381888453A5043173542 @default.
- W4381888453 hasAuthorship W4381888453A5049299476 @default.
- W4381888453 hasAuthorship W4381888453A5075757240 @default.
- W4381888453 hasAuthorship W4381888453A5078664084 @default.
- W4381888453 hasBestOaLocation W43818884531 @default.
- W4381888453 hasConcept C105795698 @default.
- W4381888453 hasConcept C109214941 @default.
- W4381888453 hasConcept C11413529 @default.
- W4381888453 hasConcept C114614502 @default.
- W4381888453 hasConcept C121332964 @default.
- W4381888453 hasConcept C121864883 @default.
- W4381888453 hasConcept C132525143 @default.
- W4381888453 hasConcept C154945302 @default.
- W4381888453 hasConcept C184720557 @default.
- W4381888453 hasConcept C195956108 @default.
- W4381888453 hasConcept C19694890 @default.
- W4381888453 hasConcept C2780598303 @default.
- W4381888453 hasConcept C33923547 @default.
- W4381888453 hasConcept C41008148 @default.
- W4381888453 hasConcept C50644808 @default.
- W4381888453 hasConcept C7602139 @default.
- W4381888453 hasConcept C80444323 @default.
- W4381888453 hasConceptScore W4381888453C105795698 @default.
- W4381888453 hasConceptScore W4381888453C109214941 @default.
- W4381888453 hasConceptScore W4381888453C11413529 @default.
- W4381888453 hasConceptScore W4381888453C114614502 @default.
- W4381888453 hasConceptScore W4381888453C121332964 @default.
- W4381888453 hasConceptScore W4381888453C121864883 @default.
- W4381888453 hasConceptScore W4381888453C132525143 @default.
- W4381888453 hasConceptScore W4381888453C154945302 @default.
- W4381888453 hasConceptScore W4381888453C184720557 @default.
- W4381888453 hasConceptScore W4381888453C195956108 @default.
- W4381888453 hasConceptScore W4381888453C19694890 @default.
- W4381888453 hasConceptScore W4381888453C2780598303 @default.
- W4381888453 hasConceptScore W4381888453C33923547 @default.
- W4381888453 hasConceptScore W4381888453C41008148 @default.
- W4381888453 hasConceptScore W4381888453C50644808 @default.
- W4381888453 hasConceptScore W4381888453C7602139 @default.
- W4381888453 hasConceptScore W4381888453C80444323 @default.