Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381888609> ?p ?o ?g. }
- W4381888609 endingPage "103443" @default.
- W4381888609 startingPage "103443" @default.
- W4381888609 abstract "Predicting food preferences is challenging due to the numerous factors that can influence individual taste. Cultural influences are one such factor that can significantly impact food preferences. Irrespective of culture, however, food visual aesthetics drive food choice. With this in mind, we study 15,000 images of food from prominent recipe portals in China, the US and Germany with the aim of identifying common visual trends related to food choice. We report that distinguishing between appreciated and less appreciated recipes based on visual features through multiple machine learning experiments is possible, with a maximum accuracy of 67%. The classifiers trained on one culture, when applied to other cultures, reveal that appreciated recipes from US and German portals share visual similarities, while the visual aspects making recipes attractive for Chinese users differ. Complementing our machine learning experiments, we conducted a user study with 450 participants from the three cultures. Participants are asked to rank recipes based on their appeal and provide justification through answering 19 questions. The results reveal significant predictors of preference, including perceived appearance and taste across all countries, and negative perception of perceived healthiness for US and German participants. Analysis of 77 consistently labelled appealing/non-appealing images reveal significant variations in low-level visual features such as colourfulness, sharpness, and contrast. These findings suggest that these low-level visual features may play a critical role in determining whether an image is perceived as appealing or not across different cultures. Our results offer promising insights into the development of cross-culture food recommender systems. By demonstrating common ground across food cultures, we believe that these systems can provide personalised meal suggestions that reflect user’s preferences while incorporating ideals such as healthfulness and sustainability." @default.
- W4381888609 created "2023-06-25" @default.
- W4381888609 creator A5041921674 @default.
- W4381888609 creator A5068502672 @default.
- W4381888609 creator A5081984770 @default.
- W4381888609 date "2023-09-01" @default.
- W4381888609 modified "2023-09-25" @default.
- W4381888609 title "Understanding and predicting cross-cultural food preferences with online recipe images" @default.
- W4381888609 cites W1141054642 @default.
- W4381888609 cites W1267451257 @default.
- W4381888609 cites W1974091555 @default.
- W4381888609 cites W1976684668 @default.
- W4381888609 cites W1981123963 @default.
- W4381888609 cites W1982635469 @default.
- W4381888609 cites W1992169730 @default.
- W4381888609 cites W1992583072 @default.
- W4381888609 cites W2001488574 @default.
- W4381888609 cites W2005419717 @default.
- W4381888609 cites W2012011657 @default.
- W4381888609 cites W2013565015 @default.
- W4381888609 cites W2017014664 @default.
- W4381888609 cites W2039051707 @default.
- W4381888609 cites W2039355801 @default.
- W4381888609 cites W2045222652 @default.
- W4381888609 cites W2045899604 @default.
- W4381888609 cites W2054610617 @default.
- W4381888609 cites W2060789977 @default.
- W4381888609 cites W2069782686 @default.
- W4381888609 cites W2082396928 @default.
- W4381888609 cites W2085786145 @default.
- W4381888609 cites W2112880224 @default.
- W4381888609 cites W2116421927 @default.
- W4381888609 cites W2118338035 @default.
- W4381888609 cites W2121327289 @default.
- W4381888609 cites W2121489292 @default.
- W4381888609 cites W2133270441 @default.
- W4381888609 cites W2136630539 @default.
- W4381888609 cites W2143470272 @default.
- W4381888609 cites W2145247121 @default.
- W4381888609 cites W2151103935 @default.
- W4381888609 cites W2152681092 @default.
- W4381888609 cites W2152810826 @default.
- W4381888609 cites W2155844147 @default.
- W4381888609 cites W2160376531 @default.
- W4381888609 cites W2165698076 @default.
- W4381888609 cites W2194775991 @default.
- W4381888609 cites W2238104590 @default.
- W4381888609 cites W2251852685 @default.
- W4381888609 cites W2276076611 @default.
- W4381888609 cites W2463652071 @default.
- W4381888609 cites W2468797166 @default.
- W4381888609 cites W2469850813 @default.
- W4381888609 cites W2470357003 @default.
- W4381888609 cites W2511134733 @default.
- W4381888609 cites W2545564314 @default.
- W4381888609 cites W2556283591 @default.
- W4381888609 cites W2646271792 @default.
- W4381888609 cites W2727088829 @default.
- W4381888609 cites W2728515412 @default.
- W4381888609 cites W2734353378 @default.
- W4381888609 cites W2749515178 @default.
- W4381888609 cites W2761189739 @default.
- W4381888609 cites W2765707332 @default.
- W4381888609 cites W2797475399 @default.
- W4381888609 cites W2850472811 @default.
- W4381888609 cites W2892686272 @default.
- W4381888609 cites W2896980736 @default.
- W4381888609 cites W2910615662 @default.
- W4381888609 cites W2912147008 @default.
- W4381888609 cites W2917608409 @default.
- W4381888609 cites W2948916521 @default.
- W4381888609 cites W2960416371 @default.
- W4381888609 cites W2963918631 @default.
- W4381888609 cites W2972610293 @default.
- W4381888609 cites W2981816478 @default.
- W4381888609 cites W2987433887 @default.
- W4381888609 cites W2996174938 @default.
- W4381888609 cites W3018652575 @default.
- W4381888609 cites W3036505730 @default.
- W4381888609 cites W3041350610 @default.
- W4381888609 cites W3093367948 @default.
- W4381888609 cites W3108242852 @default.
- W4381888609 cites W3111438812 @default.
- W4381888609 cites W3125706928 @default.
- W4381888609 cites W3132587403 @default.
- W4381888609 cites W3135855479 @default.
- W4381888609 cites W3152709035 @default.
- W4381888609 cites W3199687141 @default.
- W4381888609 cites W4210604201 @default.
- W4381888609 cites W4239221280 @default.
- W4381888609 cites W4309813258 @default.
- W4381888609 cites W4319996536 @default.
- W4381888609 cites W68368648 @default.
- W4381888609 doi "https://doi.org/10.1016/j.ipm.2023.103443" @default.
- W4381888609 hasPublicationYear "2023" @default.
- W4381888609 type Work @default.
- W4381888609 citedByCount "1" @default.
- W4381888609 countsByYear W43818886092023 @default.