Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381930281> ?p ?o ?g. }
- W4381930281 endingPage "104846" @default.
- W4381930281 startingPage "104846" @default.
- W4381930281 abstract "Multiple sclerosis (MS) is one of the most prevalent chronic inflammatory diseases caused by demyelination and axonal damage in the central nervous system. Structural retinal imaging via optical coherence tomography (OCT) shows promise as a noninvasive biomarker for monitoring of MS. There are successful reports regarding the application of Artificial Intelligence (AI) in the analysis of cross-sectional OCTs in ophthalmologic diseases. However, the alteration of thicknesses of various retinal layers in MS is noticeably subtle compared to other ophthalmologic diseases. Therefore, raw cross-sectional OCTs are replaced with multilayer segmented OCTs for discrimination of MS and healthy controls (HCs).To conform to the principles of trustworthy AI, interpretability is provided by visualizing the regional layer contribution to classification performance with the proposed occlusion sensitivity approach. The robustness of the classification is also guaranteed by showing the effectiveness of the algorithm while being tested on the new independent dataset. The most discriminative features from different topologies of the multilayer segmented OCTs are selected by the dimension reduction method. Support vector machine (SVM), random forest (RF), and artificial neural network (ANN) are used for classification. Patient-wise cross-validation (CV) is utilized to evaluate the performance of the algorithm, where the training and test folds contain records from different subjects.The most discriminative topology is determined to square with a size of 40 pixels and the most influential layers are the ganglion cell and inner plexiform layer (GCIPL) and inner nuclear layer (INL). Linear SVM resulted in 88% Accuracy (with standard deviation (std) = 0.49 in 10 times of execution to indicate the repeatability), 78% precision (std=1.48), and 63% recall (std=1.35) in the discrimination of MS and HCs using macular multilayer segmented OCTs.The proposed classification algorithm is expected to help neurologists in the early diagnosis of MS. This paper distinguishes itself from other studies by employing two distinct datasets, which enhances the robustness of its findings in comparison with previous studies with lack of external validation. This study aims to circumvent the utilization of deep learning methods due to the limited quantity of the available data and convincingly demonstrates that favorable outcomes can be achieved without relying on deep learning techniques." @default.
- W4381930281 created "2023-06-25" @default.
- W4381930281 creator A5029789559 @default.
- W4381930281 creator A5047859644 @default.
- W4381930281 creator A5052490368 @default.
- W4381930281 creator A5058847972 @default.
- W4381930281 creator A5061584427 @default.
- W4381930281 creator A5063194151 @default.
- W4381930281 creator A5065023523 @default.
- W4381930281 creator A5088512021 @default.
- W4381930281 date "2023-09-01" @default.
- W4381930281 modified "2023-10-16" @default.
- W4381930281 title "Discrimination of multiple sclerosis using OCT images from two different centers" @default.
- W4381930281 cites W2001110565 @default.
- W4381930281 cites W2009195969 @default.
- W4381930281 cites W2038221289 @default.
- W4381930281 cites W2065268416 @default.
- W4381930281 cites W2075584671 @default.
- W4381930281 cites W2149800755 @default.
- W4381930281 cites W2560103205 @default.
- W4381930281 cites W2595557058 @default.
- W4381930281 cites W2755106885 @default.
- W4381930281 cites W2883501862 @default.
- W4381930281 cites W2886281300 @default.
- W4381930281 cites W2893693469 @default.
- W4381930281 cites W2898192966 @default.
- W4381930281 cites W2907441857 @default.
- W4381930281 cites W2924908224 @default.
- W4381930281 cites W2951680115 @default.
- W4381930281 cites W2981282950 @default.
- W4381930281 cites W2983515907 @default.
- W4381930281 cites W2992200549 @default.
- W4381930281 cites W3048149209 @default.
- W4381930281 cites W3080515170 @default.
- W4381930281 cites W3083027974 @default.
- W4381930281 cites W3097832380 @default.
- W4381930281 cites W3102298847 @default.
- W4381930281 cites W3106750174 @default.
- W4381930281 cites W3110457716 @default.
- W4381930281 cites W3127804597 @default.
- W4381930281 cites W3159237871 @default.
- W4381930281 cites W3162677054 @default.
- W4381930281 cites W3173305813 @default.
- W4381930281 cites W3212182683 @default.
- W4381930281 cites W4224230751 @default.
- W4381930281 cites W4253381763 @default.
- W4381930281 cites W4297231406 @default.
- W4381930281 doi "https://doi.org/10.1016/j.msard.2023.104846" @default.
- W4381930281 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37413855" @default.
- W4381930281 hasPublicationYear "2023" @default.
- W4381930281 type Work @default.
- W4381930281 citedByCount "0" @default.
- W4381930281 crossrefType "journal-article" @default.
- W4381930281 hasAuthorship W4381930281A5029789559 @default.
- W4381930281 hasAuthorship W4381930281A5047859644 @default.
- W4381930281 hasAuthorship W4381930281A5052490368 @default.
- W4381930281 hasAuthorship W4381930281A5058847972 @default.
- W4381930281 hasAuthorship W4381930281A5061584427 @default.
- W4381930281 hasAuthorship W4381930281A5063194151 @default.
- W4381930281 hasAuthorship W4381930281A5065023523 @default.
- W4381930281 hasAuthorship W4381930281A5088512021 @default.
- W4381930281 hasBestOaLocation W43819302811 @default.
- W4381930281 hasConcept C118487528 @default.
- W4381930281 hasConcept C12267149 @default.
- W4381930281 hasConcept C153180895 @default.
- W4381930281 hasConcept C154945302 @default.
- W4381930281 hasConcept C2778818243 @default.
- W4381930281 hasConcept C2781067378 @default.
- W4381930281 hasConcept C41008148 @default.
- W4381930281 hasConcept C71924100 @default.
- W4381930281 hasConcept C97931131 @default.
- W4381930281 hasConceptScore W4381930281C118487528 @default.
- W4381930281 hasConceptScore W4381930281C12267149 @default.
- W4381930281 hasConceptScore W4381930281C153180895 @default.
- W4381930281 hasConceptScore W4381930281C154945302 @default.
- W4381930281 hasConceptScore W4381930281C2778818243 @default.
- W4381930281 hasConceptScore W4381930281C2781067378 @default.
- W4381930281 hasConceptScore W4381930281C41008148 @default.
- W4381930281 hasConceptScore W4381930281C71924100 @default.
- W4381930281 hasConceptScore W4381930281C97931131 @default.
- W4381930281 hasLocation W43819302811 @default.
- W4381930281 hasLocation W43819302812 @default.
- W4381930281 hasLocation W43819302813 @default.
- W4381930281 hasLocation W43819302814 @default.
- W4381930281 hasLocation W43819302815 @default.
- W4381930281 hasOpenAccess W4381930281 @default.
- W4381930281 hasPrimaryLocation W43819302811 @default.
- W4381930281 hasRelatedWork W1652783584 @default.
- W4381930281 hasRelatedWork W2082783427 @default.
- W4381930281 hasRelatedWork W2404514746 @default.
- W4381930281 hasRelatedWork W2806259446 @default.
- W4381930281 hasRelatedWork W2905433371 @default.
- W4381930281 hasRelatedWork W2958404818 @default.
- W4381930281 hasRelatedWork W4310278675 @default.
- W4381930281 hasRelatedWork W4361193272 @default.
- W4381930281 hasRelatedWork W2088733771 @default.
- W4381930281 hasRelatedWork W2963326959 @default.
- W4381930281 hasVolume "77" @default.