Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381942792> ?p ?o ?g. }
- W4381942792 abstract "Introduction Use of chemical fertilization and pesticides not only harm the environment but also have detrimental consequences on human health. In recent years, there has been a major emphasis worldwide on natural agriculture methods. Regenerative agriculture is known across the world as a combination of nature-friendly farming practices such as no-till, cover cropping, crop-rotation, agroforestry and use of organic home-based/farm-based ingredients to revive soil health. In India, a number of farmers are slowly adopting these practices using home-based mixtures and farmyard manure for soil rejuvenation and pest management. In order to evaluate the efficacy of the regenerative agriculture practices, this study compared conventional and regenerative agriculture plots for their soil bacterial and nutrient profiles. Methods Two crops - ragi (Finger millet, an old world cereal eaten in India) and vegetable (tomato/beans), and different lengths (≤3 and >5 years) of regenerative practices were additional metrics considered to understand variabilities due to crop-type and period of application. The common regenerative agriculture practices used by farmers in this study included a mix of practices such as mulching, minimal-till, inter-cropping, crop-rotation, along with application of farmyard manure and other home-based concoctions rich in nutrients and microbes for enriching the soil. Results We found that all regenerative practices were effective in bringing about an enrichment for soil bacteria with a more heterogeneous composition. Additionally, in regenerative vegetable (RV) versus conventional vegetable (CV) and barren land (BL) plots the relative percentage abundance of Actinobacteriota (RV-7.47%/ CV-6.24%/BL -7.02%) and Chloroflexi (RV-9.37%/ CV-6.63%/BL-8.75%) was slightly higher. In contrast, levels of Acidobacteriota (RV-8.1%/ CV-9.88%/BL-9.62%) was significantly lower. Similarly, regenerative ragi (RR) in comparison with conventional ragi (CR) and barren land (BL) plots saw higher representation of Firmicutes (RR-5.45%/ CR-2.38%/BL-1.45%) and Actinobacteriota (RR-11.53%/ CR-7.08%/BL-7.15%) and a concurrent reduction in Acidobacteriota (RR-6.91%/CR-7.39%/ BL-9.79%). The RV plots were found to be enriched for Plant Growth Promoting Rhizobacteria (PGPRs) - Pseudomonas sp. (RV-0.51%/CV-0.01%/BL-0.21%), and RR plots were enriched for Bacillus sp. (RR-1.35%/CR-0.95%/BL-0.61%), and Mesorhizobium sp. (0.30%/0.12%/0.21%), which are known to play significant roles in vegetable and ragi growth respectively. Discussion Interestingly, long-term regenerative agriculture was able to support good nutrient composition while enhancing Soil Organic Carbon (SOC) levels. In all, the regenerative agriculture practices were found to be effective in improving bacterial community structure and simultaneously improving soil health. We found that BL soil with eucalyptus plantation showed among the least bacterial diversity suggesting detrimental impact on soil health." @default.
- W4381942792 created "2023-06-26" @default.
- W4381942792 creator A5004523344 @default.
- W4381942792 creator A5005251247 @default.
- W4381942792 creator A5049146195 @default.
- W4381942792 creator A5052222522 @default.
- W4381942792 creator A5085789773 @default.
- W4381942792 date "2023-05-05" @default.
- W4381942792 modified "2023-10-16" @default.
- W4381942792 title "Regenerative agriculture augments bacterial community structure for a healthier soil and agriculture" @default.
- W4381942792 cites W1934798267 @default.
- W4381942792 cites W1993601087 @default.
- W4381942792 cites W2003887127 @default.
- W4381942792 cites W2006646880 @default.
- W4381942792 cites W2033152036 @default.
- W4381942792 cites W2033221700 @default.
- W4381942792 cites W2062307117 @default.
- W4381942792 cites W2091160252 @default.
- W4381942792 cites W2101730067 @default.
- W4381942792 cites W2109683890 @default.
- W4381942792 cites W2113788035 @default.
- W4381942792 cites W2146327280 @default.
- W4381942792 cites W2162774880 @default.
- W4381942792 cites W2262303243 @default.
- W4381942792 cites W2288397911 @default.
- W4381942792 cites W2569395604 @default.
- W4381942792 cites W2571249881 @default.
- W4381942792 cites W2607506593 @default.
- W4381942792 cites W2750970844 @default.
- W4381942792 cites W2753909702 @default.
- W4381942792 cites W2755291024 @default.
- W4381942792 cites W2790351254 @default.
- W4381942792 cites W2797834989 @default.
- W4381942792 cites W2803010853 @default.
- W4381942792 cites W2897314349 @default.
- W4381942792 cites W2899141761 @default.
- W4381942792 cites W2901108786 @default.
- W4381942792 cites W2954315845 @default.
- W4381942792 cites W2963276645 @default.
- W4381942792 cites W2974344062 @default.
- W4381942792 cites W2979709653 @default.
- W4381942792 cites W2980475906 @default.
- W4381942792 cites W2989147081 @default.
- W4381942792 cites W3016367021 @default.
- W4381942792 cites W3020305494 @default.
- W4381942792 cites W3036966333 @default.
- W4381942792 cites W3043062835 @default.
- W4381942792 cites W3047805004 @default.
- W4381942792 cites W3082666401 @default.
- W4381942792 cites W3091960408 @default.
- W4381942792 cites W3096347840 @default.
- W4381942792 cites W3109215453 @default.
- W4381942792 cites W3111582090 @default.
- W4381942792 cites W3112920764 @default.
- W4381942792 cites W3122995969 @default.
- W4381942792 cites W3132094443 @default.
- W4381942792 cites W3132214732 @default.
- W4381942792 cites W3132623946 @default.
- W4381942792 cites W3133824892 @default.
- W4381942792 cites W3134063294 @default.
- W4381942792 cites W3134514326 @default.
- W4381942792 cites W3135705482 @default.
- W4381942792 cites W3138482515 @default.
- W4381942792 cites W3142728898 @default.
- W4381942792 cites W3153011477 @default.
- W4381942792 cites W3156486718 @default.
- W4381942792 cites W3163077445 @default.
- W4381942792 cites W3165641780 @default.
- W4381942792 cites W3166750842 @default.
- W4381942792 cites W3167634134 @default.
- W4381942792 cites W3173163870 @default.
- W4381942792 cites W3173601648 @default.
- W4381942792 cites W3183080151 @default.
- W4381942792 cites W3197440344 @default.
- W4381942792 cites W3202899376 @default.
- W4381942792 cites W3203049973 @default.
- W4381942792 cites W3204783059 @default.
- W4381942792 cites W3212081051 @default.
- W4381942792 cites W4205104647 @default.
- W4381942792 cites W4254687493 @default.
- W4381942792 cites W4289170407 @default.
- W4381942792 doi "https://doi.org/10.3389/fagro.2023.1134514" @default.
- W4381942792 hasPublicationYear "2023" @default.
- W4381942792 type Work @default.
- W4381942792 citedByCount "0" @default.
- W4381942792 crossrefType "journal-article" @default.
- W4381942792 hasAuthorship W4381942792A5004523344 @default.
- W4381942792 hasAuthorship W4381942792A5005251247 @default.
- W4381942792 hasAuthorship W4381942792A5049146195 @default.
- W4381942792 hasAuthorship W4381942792A5052222522 @default.
- W4381942792 hasAuthorship W4381942792A5085789773 @default.
- W4381942792 hasBestOaLocation W43819427921 @default.
- W4381942792 hasConcept C105462344 @default.
- W4381942792 hasConcept C118518473 @default.
- W4381942792 hasConcept C126408429 @default.
- W4381942792 hasConcept C13558536 @default.
- W4381942792 hasConcept C137580998 @default.
- W4381942792 hasConcept C159750122 @default.
- W4381942792 hasConcept C175760724 @default.
- W4381942792 hasConcept C182124840 @default.