Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381952103> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4381952103 endingPage "100187" @default.
- W4381952103 startingPage "100187" @default.
- W4381952103 abstract "Deep learning has demonstrated outstanding success in unstructured data areas, such as computer vision. However, it has not exhibited noteworthy performance in exploiting structured data (tabular data). A neural network is inefficient in treating the structured data type, particularly when categorical variables are dominant. This explains the substandard achievements of deep learning in structured data. This study applies a dense (fully connected) neural network to a structured dataset (three-million car registration records) to estimate car prices, and attempts to improve the network performance using entity embedding layer, when the prevalent data types are categorical variables. It is demonstrated that the information can be captured efficiently via entity embedding technique. The network designed for this study is expected to be reused in valuation tasks where data are highly cardinal. Additionally, the empirical findings identified in embedding matrix could provide insights for the asset valuation industry in the form of transfer learning." @default.
- W4381952103 created "2023-06-26" @default.
- W4381952103 creator A5017169340 @default.
- W4381952103 date "2023-11-01" @default.
- W4381952103 modified "2023-09-29" @default.
- W4381952103 title "How can we use neural network with entity embedding for product valuations? A case study for the car industry" @default.
- W4381952103 cites W1977340916 @default.
- W4381952103 cites W1979889901 @default.
- W4381952103 cites W1988980926 @default.
- W4381952103 cites W2001035210 @default.
- W4381952103 cites W2022011789 @default.
- W4381952103 cites W2031504295 @default.
- W4381952103 cites W2075645388 @default.
- W4381952103 cites W2083206895 @default.
- W4381952103 cites W2099932395 @default.
- W4381952103 cites W2137123222 @default.
- W4381952103 cites W2249432804 @default.
- W4381952103 cites W2539859476 @default.
- W4381952103 cites W2589857635 @default.
- W4381952103 cites W2934302500 @default.
- W4381952103 cites W2945060583 @default.
- W4381952103 cites W2979017741 @default.
- W4381952103 cites W3044177347 @default.
- W4381952103 cites W3112071392 @default.
- W4381952103 cites W3114741519 @default.
- W4381952103 cites W3114925130 @default.
- W4381952103 cites W3133936714 @default.
- W4381952103 cites W4200385155 @default.
- W4381952103 cites W4200450752 @default.
- W4381952103 cites W4200606280 @default.
- W4381952103 cites W4210528010 @default.
- W4381952103 cites W4214819324 @default.
- W4381952103 cites W4220893330 @default.
- W4381952103 cites W4311086326 @default.
- W4381952103 cites W4377100823 @default.
- W4381952103 doi "https://doi.org/10.1016/j.jjimei.2023.100187" @default.
- W4381952103 hasPublicationYear "2023" @default.
- W4381952103 type Work @default.
- W4381952103 citedByCount "0" @default.
- W4381952103 crossrefType "journal-article" @default.
- W4381952103 hasAuthorship W4381952103A5017169340 @default.
- W4381952103 hasBestOaLocation W43819521031 @default.
- W4381952103 hasConcept C10138342 @default.
- W4381952103 hasConcept C108583219 @default.
- W4381952103 hasConcept C119857082 @default.
- W4381952103 hasConcept C124101348 @default.
- W4381952103 hasConcept C144133560 @default.
- W4381952103 hasConcept C154945302 @default.
- W4381952103 hasConcept C186027771 @default.
- W4381952103 hasConcept C41008148 @default.
- W4381952103 hasConcept C41608201 @default.
- W4381952103 hasConcept C50644808 @default.
- W4381952103 hasConcept C5274069 @default.
- W4381952103 hasConceptScore W4381952103C10138342 @default.
- W4381952103 hasConceptScore W4381952103C108583219 @default.
- W4381952103 hasConceptScore W4381952103C119857082 @default.
- W4381952103 hasConceptScore W4381952103C124101348 @default.
- W4381952103 hasConceptScore W4381952103C144133560 @default.
- W4381952103 hasConceptScore W4381952103C154945302 @default.
- W4381952103 hasConceptScore W4381952103C186027771 @default.
- W4381952103 hasConceptScore W4381952103C41008148 @default.
- W4381952103 hasConceptScore W4381952103C41608201 @default.
- W4381952103 hasConceptScore W4381952103C50644808 @default.
- W4381952103 hasConceptScore W4381952103C5274069 @default.
- W4381952103 hasIssue "2" @default.
- W4381952103 hasLocation W43819521031 @default.
- W4381952103 hasOpenAccess W4381952103 @default.
- W4381952103 hasPrimaryLocation W43819521031 @default.
- W4381952103 hasRelatedWork W3014300295 @default.
- W4381952103 hasRelatedWork W3164822677 @default.
- W4381952103 hasRelatedWork W4223943233 @default.
- W4381952103 hasRelatedWork W4225161397 @default.
- W4381952103 hasRelatedWork W4250304930 @default.
- W4381952103 hasRelatedWork W4309045103 @default.
- W4381952103 hasRelatedWork W4312200629 @default.
- W4381952103 hasRelatedWork W4360585206 @default.
- W4381952103 hasRelatedWork W4364306694 @default.
- W4381952103 hasRelatedWork W4380086463 @default.
- W4381952103 hasVolume "3" @default.
- W4381952103 isParatext "false" @default.
- W4381952103 isRetracted "false" @default.
- W4381952103 workType "article" @default.