Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381987931> ?p ?o ?g. }
- W4381987931 endingPage "105159" @default.
- W4381987931 startingPage "105159" @default.
- W4381987931 abstract "The diagnosis of voice disorders typically involves examination of laryngoscopic video frames by trained experts. Videokymography (VKG) is a useful clinical tool to represent the glottal dynamics and vibratory patterns as kymographic images. In this work, a 2D Convolutional Neural Network (2D CNN) was used to classify voice disorders from kymograms. High-speed videoendoscopy (HSV) recordings of the ''Benchmark for Automatic Glottis Segmentation'' (BAGLS) database were used as the corpus for the voice disorders. Kymographic images were generated from this corpus. For each classification problem addressed in this work, 90% of the generated kymograms were used to train the network and the remaining 10% was used for testing its classification performance. Classification accuracies of 94.237% and 94.8% were obtained for the two cases of binary classification (healthy vs disorders, and healthy vs muscle tension dysphonia). Ternary classification (healthy vs functional vs organic disorders) of the dataset yielded an accuracy of 93.1%." @default.
- W4381987931 created "2023-06-26" @default.
- W4381987931 creator A5005397407 @default.
- W4381987931 creator A5007344093 @default.
- W4381987931 creator A5091461256 @default.
- W4381987931 creator A5092260133 @default.
- W4381987931 date "2023-09-01" @default.
- W4381987931 modified "2023-10-06" @default.
- W4381987931 title "Convolutional neural network for voice disorders classification using kymograms" @default.
- W4381987931 cites W1988557999 @default.
- W4381987931 cites W2012191179 @default.
- W4381987931 cites W2027367352 @default.
- W4381987931 cites W2028185556 @default.
- W4381987931 cites W2028739360 @default.
- W4381987931 cites W2034660930 @default.
- W4381987931 cites W2045347645 @default.
- W4381987931 cites W2051867010 @default.
- W4381987931 cites W2060285946 @default.
- W4381987931 cites W2078053765 @default.
- W4381987931 cites W2079905106 @default.
- W4381987931 cites W2100768436 @default.
- W4381987931 cites W2144844252 @default.
- W4381987931 cites W2155308441 @default.
- W4381987931 cites W2170927693 @default.
- W4381987931 cites W2500181886 @default.
- W4381987931 cites W2550083119 @default.
- W4381987931 cites W2751249821 @default.
- W4381987931 cites W2810958285 @default.
- W4381987931 cites W2811120218 @default.
- W4381987931 cites W2897940299 @default.
- W4381987931 cites W2945968413 @default.
- W4381987931 cites W2995942064 @default.
- W4381987931 cites W2996893007 @default.
- W4381987931 cites W3006805607 @default.
- W4381987931 cites W3011110797 @default.
- W4381987931 cites W3015540340 @default.
- W4381987931 cites W3031948080 @default.
- W4381987931 cites W3036483348 @default.
- W4381987931 cites W3107935573 @default.
- W4381987931 cites W3139602303 @default.
- W4381987931 doi "https://doi.org/10.1016/j.bspc.2023.105159" @default.
- W4381987931 hasPublicationYear "2023" @default.
- W4381987931 type Work @default.
- W4381987931 citedByCount "0" @default.
- W4381987931 crossrefType "journal-article" @default.
- W4381987931 hasAuthorship W4381987931A5005397407 @default.
- W4381987931 hasAuthorship W4381987931A5007344093 @default.
- W4381987931 hasAuthorship W4381987931A5091461256 @default.
- W4381987931 hasAuthorship W4381987931A5092260133 @default.
- W4381987931 hasConcept C12267149 @default.
- W4381987931 hasConcept C13280743 @default.
- W4381987931 hasConcept C141071460 @default.
- W4381987931 hasConcept C153180895 @default.
- W4381987931 hasConcept C154945302 @default.
- W4381987931 hasConcept C185798385 @default.
- W4381987931 hasConcept C205649164 @default.
- W4381987931 hasConcept C2780474809 @default.
- W4381987931 hasConcept C2781447300 @default.
- W4381987931 hasConcept C28490314 @default.
- W4381987931 hasConcept C2908717642 @default.
- W4381987931 hasConcept C41008148 @default.
- W4381987931 hasConcept C548259974 @default.
- W4381987931 hasConcept C66905080 @default.
- W4381987931 hasConcept C71924100 @default.
- W4381987931 hasConcept C81363708 @default.
- W4381987931 hasConcept C89600930 @default.
- W4381987931 hasConceptScore W4381987931C12267149 @default.
- W4381987931 hasConceptScore W4381987931C13280743 @default.
- W4381987931 hasConceptScore W4381987931C141071460 @default.
- W4381987931 hasConceptScore W4381987931C153180895 @default.
- W4381987931 hasConceptScore W4381987931C154945302 @default.
- W4381987931 hasConceptScore W4381987931C185798385 @default.
- W4381987931 hasConceptScore W4381987931C205649164 @default.
- W4381987931 hasConceptScore W4381987931C2780474809 @default.
- W4381987931 hasConceptScore W4381987931C2781447300 @default.
- W4381987931 hasConceptScore W4381987931C28490314 @default.
- W4381987931 hasConceptScore W4381987931C2908717642 @default.
- W4381987931 hasConceptScore W4381987931C41008148 @default.
- W4381987931 hasConceptScore W4381987931C548259974 @default.
- W4381987931 hasConceptScore W4381987931C66905080 @default.
- W4381987931 hasConceptScore W4381987931C71924100 @default.
- W4381987931 hasConceptScore W4381987931C81363708 @default.
- W4381987931 hasConceptScore W4381987931C89600930 @default.
- W4381987931 hasFunder F4320326758 @default.
- W4381987931 hasFunder F4320327979 @default.
- W4381987931 hasLocation W43819879311 @default.
- W4381987931 hasOpenAccess W4381987931 @default.
- W4381987931 hasPrimaryLocation W43819879311 @default.
- W4381987931 hasRelatedWork W1964805666 @default.
- W4381987931 hasRelatedWork W2393413057 @default.
- W4381987931 hasRelatedWork W2755702751 @default.
- W4381987931 hasRelatedWork W2767651786 @default.
- W4381987931 hasRelatedWork W2912288872 @default.
- W4381987931 hasRelatedWork W2994154139 @default.
- W4381987931 hasRelatedWork W4200528772 @default.
- W4381987931 hasRelatedWork W4285281467 @default.
- W4381987931 hasRelatedWork W564581980 @default.
- W4381987931 hasRelatedWork W2345184372 @default.