Matches in SemOpenAlex for { <https://semopenalex.org/work/W4381996369> ?p ?o ?g. }
- W4381996369 endingPage "121427" @default.
- W4381996369 startingPage "121427" @default.
- W4381996369 abstract "As cities are critical actors in mitigating climate change and achieving the “3060″ target, multi-scenario studies on urban carbon emissions can provide a scientific basis for formulating urban carbon peaking action plans. To remedy the problems of missing regional statistics, inconsistent caliber, and lack of city-scale studies in carbon emission research, this paper uses the sparrow optimization neural network algorithm to fit carbon emission data with nighttime stable light for training. Carbon emission data were obtained for 281 cities in China during 2000–2020. The rates of change of influencing factors are set based on shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs) for different periods and different scenarios. The carbon emission and carbon peaking evolution paths of service, industrial and comprehensive cities from 2021 to 2060 are dynamically simulated. The results show that (1) service cities are significantly higher than industrial and comprehensive cities in population, GDP, secondary industry output, and energy consumption. (2) The economic development effect, as the primary driver of carbon emission growth, increases and then decreases in all five categories of cities, with 2010 as the inflection point. Industrial structure improvement has an increasingly strong offsetting effect on carbon emissions and is one of the critical directions for future carbon emission reduction. (3) Service cities such as Beijing and Shanghai are already at the completion stage of urban transformation and are more likely to reach the carbon peak on their own than other types of cities. In the low carbon following scenario, comprehensive cities such as Kaifeng, Rizhao, and Jilin can achieve their carbon peaking targets efficiently. The findings of this paper can provide valid theoretical support for carbon peaking action programs in China and other countries." @default.
- W4381996369 created "2023-06-26" @default.
- W4381996369 creator A5009152925 @default.
- W4381996369 creator A5022418941 @default.
- W4381996369 creator A5034686488 @default.
- W4381996369 creator A5043757150 @default.
- W4381996369 creator A5058376744 @default.
- W4381996369 creator A5081803434 @default.
- W4381996369 creator A5088415139 @default.
- W4381996369 creator A5091492575 @default.
- W4381996369 date "2023-10-01" @default.
- W4381996369 modified "2023-09-30" @default.
- W4381996369 title "Can Chinese cities reach their carbon peaks on time? Scenario analysis based on machine learning and LMDI decomposition" @default.
- W4381996369 cites W1985148570 @default.
- W4381996369 cites W1997600725 @default.
- W4381996369 cites W2040528227 @default.
- W4381996369 cites W2056196041 @default.
- W4381996369 cites W2089710331 @default.
- W4381996369 cites W2104005644 @default.
- W4381996369 cites W2150480886 @default.
- W4381996369 cites W2331599926 @default.
- W4381996369 cites W2347185565 @default.
- W4381996369 cites W2442928002 @default.
- W4381996369 cites W2469509239 @default.
- W4381996369 cites W2485995124 @default.
- W4381996369 cites W2519699527 @default.
- W4381996369 cites W2525908221 @default.
- W4381996369 cites W2601387536 @default.
- W4381996369 cites W2753676324 @default.
- W4381996369 cites W2767918536 @default.
- W4381996369 cites W2770206078 @default.
- W4381996369 cites W2773877697 @default.
- W4381996369 cites W2778844768 @default.
- W4381996369 cites W2780189834 @default.
- W4381996369 cites W2793121129 @default.
- W4381996369 cites W2802788189 @default.
- W4381996369 cites W2805825298 @default.
- W4381996369 cites W2810879755 @default.
- W4381996369 cites W2810999103 @default.
- W4381996369 cites W2886830233 @default.
- W4381996369 cites W2895273735 @default.
- W4381996369 cites W2897884186 @default.
- W4381996369 cites W2902424050 @default.
- W4381996369 cites W2902446853 @default.
- W4381996369 cites W2909951396 @default.
- W4381996369 cites W2910559415 @default.
- W4381996369 cites W2921777592 @default.
- W4381996369 cites W2946551105 @default.
- W4381996369 cites W2965846831 @default.
- W4381996369 cites W2967204512 @default.
- W4381996369 cites W2969969669 @default.
- W4381996369 cites W2973049168 @default.
- W4381996369 cites W2982056514 @default.
- W4381996369 cites W2988115128 @default.
- W4381996369 cites W2997627876 @default.
- W4381996369 cites W2998553334 @default.
- W4381996369 cites W3003244946 @default.
- W4381996369 cites W3009381650 @default.
- W4381996369 cites W3010545774 @default.
- W4381996369 cites W3012198031 @default.
- W4381996369 cites W3015921806 @default.
- W4381996369 cites W3017262917 @default.
- W4381996369 cites W3018920586 @default.
- W4381996369 cites W3027398730 @default.
- W4381996369 cites W3035595432 @default.
- W4381996369 cites W3040527860 @default.
- W4381996369 cites W3041303727 @default.
- W4381996369 cites W3047749333 @default.
- W4381996369 cites W3090110533 @default.
- W4381996369 cites W3096282345 @default.
- W4381996369 cites W3100991075 @default.
- W4381996369 cites W3102461524 @default.
- W4381996369 cites W3108984086 @default.
- W4381996369 cites W3139238638 @default.
- W4381996369 cites W3142011832 @default.
- W4381996369 cites W3144003534 @default.
- W4381996369 cites W3157750636 @default.
- W4381996369 cites W3186691552 @default.
- W4381996369 cites W3194020848 @default.
- W4381996369 cites W3194338684 @default.
- W4381996369 cites W3198417772 @default.
- W4381996369 cites W3203064791 @default.
- W4381996369 cites W3204384916 @default.
- W4381996369 cites W3216075450 @default.
- W4381996369 cites W4200107286 @default.
- W4381996369 cites W4206095882 @default.
- W4381996369 cites W4210471666 @default.
- W4381996369 cites W4213437522 @default.
- W4381996369 cites W4223648860 @default.
- W4381996369 cites W4225136218 @default.
- W4381996369 cites W4225158093 @default.
- W4381996369 cites W4281677178 @default.
- W4381996369 cites W4281957885 @default.
- W4381996369 cites W4282841308 @default.
- W4381996369 cites W4283267311 @default.
- W4381996369 cites W4283781302 @default.
- W4381996369 cites W4283786305 @default.
- W4381996369 cites W4284881763 @default.