Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382004362> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4382004362 endingPage "425" @default.
- W4382004362 startingPage "410" @default.
- W4382004362 abstract "Learning methods in survival analysis have the ability to handle censored observations. The Cox model is a predictive prevalent statistical technique for survival analysis, but its use rests on the strong assumption of hazard proportionality, which can be challenging to verify, particularly when working with non-linearity and high-dimensional data. Therefore, it may be necessary to consider a more flexible and generalizable approach, such as support vector machines. This paper aims to propose a new method, namely wavelet support vector censored regression, and compare the Cox model with traditional support vector regression and traditional support vector regression for censored data models, survival models based on support vector machines. In addition, to evaluate the effectiveness of different kernel functions in the support vector censored regression approach to survival data, we conducted a series of simulations with varying number of observations and ratios of censored data. Based on the simulation results, we found that the wavelet support vector censored regression outperformed the other methods in terms of the C-index. The evaluation was performed on simulations, survival benchmarking datasets and in a biomedical real application." @default.
- W4382004362 created "2023-06-26" @default.
- W4382004362 creator A5004412146 @default.
- W4382004362 creator A5026114571 @default.
- W4382004362 creator A5057612931 @default.
- W4382004362 creator A5078073624 @default.
- W4382004362 date "2023-05-04" @default.
- W4382004362 modified "2023-10-07" @default.
- W4382004362 title "Wavelet Support Vector Censored Regression" @default.
- W4382004362 cites W1963905453 @default.
- W4382004362 cites W1965801346 @default.
- W4382004362 cites W1967282395 @default.
- W4382004362 cites W1967849786 @default.
- W4382004362 cites W1972978214 @default.
- W4382004362 cites W1997677712 @default.
- W4382004362 cites W2005622485 @default.
- W4382004362 cites W2026706435 @default.
- W4382004362 cites W2042031583 @default.
- W4382004362 cites W2045850265 @default.
- W4382004362 cites W2070216889 @default.
- W4382004362 cites W2113291302 @default.
- W4382004362 cites W2134236031 @default.
- W4382004362 cites W2136885855 @default.
- W4382004362 cites W2136916987 @default.
- W4382004362 cites W2139276809 @default.
- W4382004362 cites W2156909104 @default.
- W4382004362 cites W2163282124 @default.
- W4382004362 cites W2330406605 @default.
- W4382004362 cites W2474835145 @default.
- W4382004362 cites W2559950083 @default.
- W4382004362 cites W2805004530 @default.
- W4382004362 cites W3036640231 @default.
- W4382004362 cites W3081979245 @default.
- W4382004362 cites W3085612318 @default.
- W4382004362 cites W3109551881 @default.
- W4382004362 cites W3125306199 @default.
- W4382004362 cites W4207014989 @default.
- W4382004362 cites W4239510810 @default.
- W4382004362 cites W4293241248 @default.
- W4382004362 cites W4324143449 @default.
- W4382004362 doi "https://doi.org/10.3390/analytics2020023" @default.
- W4382004362 hasPublicationYear "2023" @default.
- W4382004362 type Work @default.
- W4382004362 citedByCount "0" @default.
- W4382004362 crossrefType "journal-article" @default.
- W4382004362 hasAuthorship W4382004362A5004412146 @default.
- W4382004362 hasAuthorship W4382004362A5026114571 @default.
- W4382004362 hasAuthorship W4382004362A5057612931 @default.
- W4382004362 hasAuthorship W4382004362A5078073624 @default.
- W4382004362 hasBestOaLocation W43820043621 @default.
- W4382004362 hasConcept C105795698 @default.
- W4382004362 hasConcept C119857082 @default.
- W4382004362 hasConcept C122280245 @default.
- W4382004362 hasConcept C12267149 @default.
- W4382004362 hasConcept C124101348 @default.
- W4382004362 hasConcept C137668524 @default.
- W4382004362 hasConcept C152877465 @default.
- W4382004362 hasConcept C154945302 @default.
- W4382004362 hasConcept C33923547 @default.
- W4382004362 hasConcept C41008148 @default.
- W4382004362 hasConcept C47432892 @default.
- W4382004362 hasConcept C50382708 @default.
- W4382004362 hasConcept C83546350 @default.
- W4382004362 hasConceptScore W4382004362C105795698 @default.
- W4382004362 hasConceptScore W4382004362C119857082 @default.
- W4382004362 hasConceptScore W4382004362C122280245 @default.
- W4382004362 hasConceptScore W4382004362C12267149 @default.
- W4382004362 hasConceptScore W4382004362C124101348 @default.
- W4382004362 hasConceptScore W4382004362C137668524 @default.
- W4382004362 hasConceptScore W4382004362C152877465 @default.
- W4382004362 hasConceptScore W4382004362C154945302 @default.
- W4382004362 hasConceptScore W4382004362C33923547 @default.
- W4382004362 hasConceptScore W4382004362C41008148 @default.
- W4382004362 hasConceptScore W4382004362C47432892 @default.
- W4382004362 hasConceptScore W4382004362C50382708 @default.
- W4382004362 hasConceptScore W4382004362C83546350 @default.
- W4382004362 hasIssue "2" @default.
- W4382004362 hasLocation W43820043621 @default.
- W4382004362 hasOpenAccess W4382004362 @default.
- W4382004362 hasPrimaryLocation W43820043621 @default.
- W4382004362 hasRelatedWork W1684869656 @default.
- W4382004362 hasRelatedWork W1971606787 @default.
- W4382004362 hasRelatedWork W1976058088 @default.
- W4382004362 hasRelatedWork W200172121 @default.
- W4382004362 hasRelatedWork W2134788419 @default.
- W4382004362 hasRelatedWork W2166071402 @default.
- W4382004362 hasRelatedWork W2182034570 @default.
- W4382004362 hasRelatedWork W2316704084 @default.
- W4382004362 hasRelatedWork W4290879003 @default.
- W4382004362 hasRelatedWork W4307026303 @default.
- W4382004362 hasVolume "2" @default.
- W4382004362 isParatext "false" @default.
- W4382004362 isRetracted "false" @default.
- W4382004362 workType "article" @default.