Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382023276> ?p ?o ?g. }
- W4382023276 abstract "In this study, we explore the similarities and differences between variational Monte Carlo techniques that employ conventional and artificial neural network representations of the ground-state wave function for fermionic systems. Our primary focus is on shallow neural network architectures, specifically the restricted Boltzmann machine, and we examine unsupervised learning algorithms that are appropriate for modeling complex many-body correlations. We assess the advantages and drawbacks of conventional and neural network wave functions by applying them to a range of circular quantum dot systems. Our findings, which include results for systems containing up to 90 electrons, emphasize the efficient implementation of these methods on both homogeneous and heterogeneous high-performance computing facilities." @default.
- W4382023276 created "2023-06-27" @default.
- W4382023276 creator A5000330097 @default.
- W4382023276 creator A5007059178 @default.
- W4382023276 creator A5048149029 @default.
- W4382023276 creator A5056901977 @default.
- W4382023276 creator A5075360156 @default.
- W4382023276 date "2023-06-26" @default.
- W4382023276 modified "2023-09-26" @default.
- W4382023276 title "Efficient solutions of fermionic systems using artificial neural networks" @default.
- W4382023276 cites W1965022939 @default.
- W4382023276 cites W1981498886 @default.
- W4382023276 cites W2014078287 @default.
- W4382023276 cites W2044906260 @default.
- W4382023276 cites W2054077704 @default.
- W4382023276 cites W2056760934 @default.
- W4382023276 cites W2060642405 @default.
- W4382023276 cites W2081054117 @default.
- W4382023276 cites W2137983211 @default.
- W4382023276 cites W2232241643 @default.
- W4382023276 cites W2419175238 @default.
- W4382023276 cites W2787894218 @default.
- W4382023276 cites W2796506892 @default.
- W4382023276 cites W2923537029 @default.
- W4382023276 cites W2998790058 @default.
- W4382023276 cites W3028529071 @default.
- W4382023276 cites W3045659006 @default.
- W4382023276 cites W4214969631 @default.
- W4382023276 cites W4295101746 @default.
- W4382023276 cites W4296025716 @default.
- W4382023276 cites W4311001424 @default.
- W4382023276 cites W4322626498 @default.
- W4382023276 doi "https://doi.org/10.3389/fphy.2023.1061580" @default.
- W4382023276 hasPublicationYear "2023" @default.
- W4382023276 type Work @default.
- W4382023276 citedByCount "0" @default.
- W4382023276 crossrefType "journal-article" @default.
- W4382023276 hasAuthorship W4382023276A5000330097 @default.
- W4382023276 hasAuthorship W4382023276A5007059178 @default.
- W4382023276 hasAuthorship W4382023276A5048149029 @default.
- W4382023276 hasAuthorship W4382023276A5056901977 @default.
- W4382023276 hasAuthorship W4382023276A5075360156 @default.
- W4382023276 hasBestOaLocation W43820232761 @default.
- W4382023276 hasConcept C105795698 @default.
- W4382023276 hasConcept C113603373 @default.
- W4382023276 hasConcept C119857082 @default.
- W4382023276 hasConcept C120665830 @default.
- W4382023276 hasConcept C121332964 @default.
- W4382023276 hasConcept C121864883 @default.
- W4382023276 hasConcept C127413603 @default.
- W4382023276 hasConcept C14036430 @default.
- W4382023276 hasConcept C146978453 @default.
- W4382023276 hasConcept C147168706 @default.
- W4382023276 hasConcept C154945302 @default.
- W4382023276 hasConcept C192209626 @default.
- W4382023276 hasConcept C192576344 @default.
- W4382023276 hasConcept C19499675 @default.
- W4382023276 hasConcept C199354608 @default.
- W4382023276 hasConcept C204323151 @default.
- W4382023276 hasConcept C33923547 @default.
- W4382023276 hasConcept C41008148 @default.
- W4382023276 hasConcept C47822265 @default.
- W4382023276 hasConcept C50644808 @default.
- W4382023276 hasConcept C62520636 @default.
- W4382023276 hasConcept C66882249 @default.
- W4382023276 hasConcept C78458016 @default.
- W4382023276 hasConcept C86582703 @default.
- W4382023276 hasConcept C86803240 @default.
- W4382023276 hasConceptScore W4382023276C105795698 @default.
- W4382023276 hasConceptScore W4382023276C113603373 @default.
- W4382023276 hasConceptScore W4382023276C119857082 @default.
- W4382023276 hasConceptScore W4382023276C120665830 @default.
- W4382023276 hasConceptScore W4382023276C121332964 @default.
- W4382023276 hasConceptScore W4382023276C121864883 @default.
- W4382023276 hasConceptScore W4382023276C127413603 @default.
- W4382023276 hasConceptScore W4382023276C14036430 @default.
- W4382023276 hasConceptScore W4382023276C146978453 @default.
- W4382023276 hasConceptScore W4382023276C147168706 @default.
- W4382023276 hasConceptScore W4382023276C154945302 @default.
- W4382023276 hasConceptScore W4382023276C192209626 @default.
- W4382023276 hasConceptScore W4382023276C192576344 @default.
- W4382023276 hasConceptScore W4382023276C19499675 @default.
- W4382023276 hasConceptScore W4382023276C199354608 @default.
- W4382023276 hasConceptScore W4382023276C204323151 @default.
- W4382023276 hasConceptScore W4382023276C33923547 @default.
- W4382023276 hasConceptScore W4382023276C41008148 @default.
- W4382023276 hasConceptScore W4382023276C47822265 @default.
- W4382023276 hasConceptScore W4382023276C50644808 @default.
- W4382023276 hasConceptScore W4382023276C62520636 @default.
- W4382023276 hasConceptScore W4382023276C66882249 @default.
- W4382023276 hasConceptScore W4382023276C78458016 @default.
- W4382023276 hasConceptScore W4382023276C86582703 @default.
- W4382023276 hasConceptScore W4382023276C86803240 @default.
- W4382023276 hasLocation W43820232761 @default.
- W4382023276 hasLocation W43820232762 @default.
- W4382023276 hasOpenAccess W4382023276 @default.
- W4382023276 hasPrimaryLocation W43820232761 @default.
- W4382023276 hasRelatedWork W2320963147 @default.
- W4382023276 hasRelatedWork W2461687944 @default.
- W4382023276 hasRelatedWork W2620374287 @default.