Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382023374> ?p ?o ?g. }
- W4382023374 endingPage "764" @default.
- W4382023374 startingPage "764" @default.
- W4382023374 abstract "Osteoarthritis (OA) is the most common arthritis and the leading cause of lower extremity disability in older adults. Understanding OA progression is important in the development of patient-specific therapeutic techniques at the early stage of OA rather than at the end stage. Histopathology scoring systems are usually used to evaluate OA progress and the mechanisms involved in the development of OA. This study aims to classify the histopathological images of cartilage specimens automatically, using artificial intelligence algorithms. Hematoxylin and eosin (HE)- and safranin O and fast green (SafO)-stained images of human cartilage specimens were divided into early, mild, moderate, and severe OA. Five pre-trained convolutional networks (DarkNet-19, MobileNet, ResNet-101, NasNet) were utilized to extract the twenty features from the last fully connected layers for both scenarios of SafO and HE. Principal component analysis (PCA) and ant lion optimization (ALO) were utilized to obtain the best-weighted features. The support vector machine classifier was trained and tested based on the selected descriptors to achieve the highest accuracies of 98.04% and 97.03% in HE and SafO, respectively. Using the ALO algorithm, the F1 scores were 0.97, 0.991, 1, and 1 for the HE images and 1, 0.991, 0.97, and 1 for the SafO images for the early, mild, moderate, and severe classes, respectively. This algorithm may be a useful tool for researchers to evaluate the histopathological images of OA without the need for experts in histopathology scoring systems or the need to train new experts. Incorporating automated deep features could help to improve the characterization and understanding of OA progression and development." @default.
- W4382023374 created "2023-06-27" @default.
- W4382023374 creator A5001008408 @default.
- W4382023374 creator A5049500386 @default.
- W4382023374 date "2023-06-25" @default.
- W4382023374 modified "2023-09-30" @default.
- W4382023374 title "Automated Prediction of Osteoarthritis Level in Human Osteochondral Tissue Using Histopathological Images" @default.
- W4382023374 cites W1965665343 @default.
- W4382023374 cites W1971496705 @default.
- W4382023374 cites W2011038175 @default.
- W4382023374 cites W2031144025 @default.
- W4382023374 cites W2031942183 @default.
- W4382023374 cites W2046058619 @default.
- W4382023374 cites W2075019628 @default.
- W4382023374 cites W2099427592 @default.
- W4382023374 cites W2116045997 @default.
- W4382023374 cites W2133915381 @default.
- W4382023374 cites W2144460666 @default.
- W4382023374 cites W2288707769 @default.
- W4382023374 cites W2336456169 @default.
- W4382023374 cites W2483253941 @default.
- W4382023374 cites W2579386518 @default.
- W4382023374 cites W2621007086 @default.
- W4382023374 cites W2632480913 @default.
- W4382023374 cites W2767359756 @default.
- W4382023374 cites W2767540554 @default.
- W4382023374 cites W2771527009 @default.
- W4382023374 cites W2782684153 @default.
- W4382023374 cites W2887031790 @default.
- W4382023374 cites W2897126862 @default.
- W4382023374 cites W2901023064 @default.
- W4382023374 cites W2902567286 @default.
- W4382023374 cites W2923189046 @default.
- W4382023374 cites W2976224611 @default.
- W4382023374 cites W2986988311 @default.
- W4382023374 cites W3016150169 @default.
- W4382023374 cites W3017873021 @default.
- W4382023374 cites W3021233705 @default.
- W4382023374 cites W3036485623 @default.
- W4382023374 cites W3036880638 @default.
- W4382023374 cites W3042793628 @default.
- W4382023374 cites W3049101715 @default.
- W4382023374 cites W3086041805 @default.
- W4382023374 cites W3120252043 @default.
- W4382023374 cites W3156313549 @default.
- W4382023374 cites W3163873620 @default.
- W4382023374 cites W3183909458 @default.
- W4382023374 cites W3194699675 @default.
- W4382023374 cites W3214563279 @default.
- W4382023374 cites W3215618442 @default.
- W4382023374 cites W4281606449 @default.
- W4382023374 cites W4281666884 @default.
- W4382023374 cites W4281785410 @default.
- W4382023374 cites W4306839094 @default.
- W4382023374 cites W4315702438 @default.
- W4382023374 cites W4315783890 @default.
- W4382023374 cites W4317042779 @default.
- W4382023374 cites W4317436377 @default.
- W4382023374 cites W4321249043 @default.
- W4382023374 cites W4367459262 @default.
- W4382023374 doi "https://doi.org/10.3390/bioengineering10070764" @default.
- W4382023374 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37508791" @default.
- W4382023374 hasPublicationYear "2023" @default.
- W4382023374 type Work @default.
- W4382023374 citedByCount "1" @default.
- W4382023374 countsByYear W43820233742023 @default.
- W4382023374 crossrefType "journal-article" @default.
- W4382023374 hasAuthorship W4382023374A5001008408 @default.
- W4382023374 hasAuthorship W4382023374A5049500386 @default.
- W4382023374 hasBestOaLocation W43820233741 @default.
- W4382023374 hasConcept C105702510 @default.
- W4382023374 hasConcept C119857082 @default.
- W4382023374 hasConcept C125473707 @default.
- W4382023374 hasConcept C142724271 @default.
- W4382023374 hasConcept C146357865 @default.
- W4382023374 hasConcept C151730666 @default.
- W4382023374 hasConcept C153180895 @default.
- W4382023374 hasConcept C154945302 @default.
- W4382023374 hasConcept C204787440 @default.
- W4382023374 hasConcept C27438332 @default.
- W4382023374 hasConcept C2776164576 @default.
- W4382023374 hasConcept C2780550940 @default.
- W4382023374 hasConcept C41008148 @default.
- W4382023374 hasConcept C544855455 @default.
- W4382023374 hasConcept C71924100 @default.
- W4382023374 hasConcept C74864618 @default.
- W4382023374 hasConcept C86803240 @default.
- W4382023374 hasConcept C95623464 @default.
- W4382023374 hasConceptScore W4382023374C105702510 @default.
- W4382023374 hasConceptScore W4382023374C119857082 @default.
- W4382023374 hasConceptScore W4382023374C125473707 @default.
- W4382023374 hasConceptScore W4382023374C142724271 @default.
- W4382023374 hasConceptScore W4382023374C146357865 @default.
- W4382023374 hasConceptScore W4382023374C151730666 @default.
- W4382023374 hasConceptScore W4382023374C153180895 @default.
- W4382023374 hasConceptScore W4382023374C154945302 @default.
- W4382023374 hasConceptScore W4382023374C204787440 @default.
- W4382023374 hasConceptScore W4382023374C27438332 @default.