Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382024143> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4382024143 endingPage "79" @default.
- W4382024143 startingPage "79" @default.
- W4382024143 abstract "Reflected partial differential equations (PDEs) have important applications in financial mathematics, stochastic control, physics, and engineering. This paper aims to present a numerical method for solving high-dimensional reflected PDEs. In fact, overcoming the “dimensional curse” and approximating the reflection term are challenges. Some numerical algorithms based on neural networks developed recently fail in solving high-dimensional reflected PDEs. To solve these problems, firstly, the reflected PDEs are transformed into reflected backward stochastic differential equations (BSDEs) using the reflected Feyman–Kac formula. Secondly, the reflection term of the reflected BSDEs is approximated using the penalization method. Next, the BSDEs are discretized using a strategy that combines Euler and Crank–Nicolson schemes. Finally, a deep neural network model is employed to simulate the solution of the BSDEs. The effectiveness of the proposed method is tested by two numerical experiments, and the model shows high stability and accuracy in solving reflected PDEs of up to 100 dimensions." @default.
- W4382024143 created "2023-06-27" @default.
- W4382024143 creator A5012934113 @default.
- W4382024143 creator A5040588043 @default.
- W4382024143 creator A5044809263 @default.
- W4382024143 creator A5058416717 @default.
- W4382024143 date "2023-06-24" @default.
- W4382024143 modified "2023-10-18" @default.
- W4382024143 title "Solve High-Dimensional Reflected Partial Differential Equations by Neural Network Method" @default.
- W4382024143 cites W1966348919 @default.
- W4382024143 cites W2019305020 @default.
- W4382024143 cites W2139327166 @default.
- W4382024143 cites W2163715525 @default.
- W4382024143 cites W2168527009 @default.
- W4382024143 cites W2247836589 @default.
- W4382024143 cites W2625995436 @default.
- W4382024143 cites W2743985642 @default.
- W4382024143 cites W2749028154 @default.
- W4382024143 cites W2803629276 @default.
- W4382024143 cites W2954388788 @default.
- W4382024143 cites W2993551995 @default.
- W4382024143 cites W3028295718 @default.
- W4382024143 cites W3098175809 @default.
- W4382024143 cites W3191818024 @default.
- W4382024143 cites W4235097295 @default.
- W4382024143 doi "https://doi.org/10.3390/mca28040079" @default.
- W4382024143 hasPublicationYear "2023" @default.
- W4382024143 type Work @default.
- W4382024143 citedByCount "0" @default.
- W4382024143 crossrefType "journal-article" @default.
- W4382024143 hasAuthorship W4382024143A5012934113 @default.
- W4382024143 hasAuthorship W4382024143A5040588043 @default.
- W4382024143 hasAuthorship W4382024143A5044809263 @default.
- W4382024143 hasAuthorship W4382024143A5058416717 @default.
- W4382024143 hasBestOaLocation W43820241431 @default.
- W4382024143 hasConcept C112972136 @default.
- W4382024143 hasConcept C119857082 @default.
- W4382024143 hasConcept C121332964 @default.
- W4382024143 hasConcept C126255220 @default.
- W4382024143 hasConcept C134306372 @default.
- W4382024143 hasConcept C137119250 @default.
- W4382024143 hasConcept C154945302 @default.
- W4382024143 hasConcept C199360897 @default.
- W4382024143 hasConcept C28826006 @default.
- W4382024143 hasConcept C33923547 @default.
- W4382024143 hasConcept C41008148 @default.
- W4382024143 hasConcept C48753275 @default.
- W4382024143 hasConcept C50644808 @default.
- W4382024143 hasConcept C51955184 @default.
- W4382024143 hasConcept C61797465 @default.
- W4382024143 hasConcept C62520636 @default.
- W4382024143 hasConcept C62884695 @default.
- W4382024143 hasConcept C65682993 @default.
- W4382024143 hasConcept C73000952 @default.
- W4382024143 hasConcept C75380026 @default.
- W4382024143 hasConcept C93779851 @default.
- W4382024143 hasConceptScore W4382024143C112972136 @default.
- W4382024143 hasConceptScore W4382024143C119857082 @default.
- W4382024143 hasConceptScore W4382024143C121332964 @default.
- W4382024143 hasConceptScore W4382024143C126255220 @default.
- W4382024143 hasConceptScore W4382024143C134306372 @default.
- W4382024143 hasConceptScore W4382024143C137119250 @default.
- W4382024143 hasConceptScore W4382024143C154945302 @default.
- W4382024143 hasConceptScore W4382024143C199360897 @default.
- W4382024143 hasConceptScore W4382024143C28826006 @default.
- W4382024143 hasConceptScore W4382024143C33923547 @default.
- W4382024143 hasConceptScore W4382024143C41008148 @default.
- W4382024143 hasConceptScore W4382024143C48753275 @default.
- W4382024143 hasConceptScore W4382024143C50644808 @default.
- W4382024143 hasConceptScore W4382024143C51955184 @default.
- W4382024143 hasConceptScore W4382024143C61797465 @default.
- W4382024143 hasConceptScore W4382024143C62520636 @default.
- W4382024143 hasConceptScore W4382024143C62884695 @default.
- W4382024143 hasConceptScore W4382024143C65682993 @default.
- W4382024143 hasConceptScore W4382024143C73000952 @default.
- W4382024143 hasConceptScore W4382024143C75380026 @default.
- W4382024143 hasConceptScore W4382024143C93779851 @default.
- W4382024143 hasIssue "4" @default.
- W4382024143 hasLocation W43820241431 @default.
- W4382024143 hasOpenAccess W4382024143 @default.
- W4382024143 hasPrimaryLocation W43820241431 @default.
- W4382024143 hasRelatedWork W1573551927 @default.
- W4382024143 hasRelatedWork W1998478800 @default.
- W4382024143 hasRelatedWork W2505215844 @default.
- W4382024143 hasRelatedWork W2807808632 @default.
- W4382024143 hasRelatedWork W2911367846 @default.
- W4382024143 hasRelatedWork W3126115680 @default.
- W4382024143 hasRelatedWork W3162423291 @default.
- W4382024143 hasRelatedWork W4299491153 @default.
- W4382024143 hasRelatedWork W4300720550 @default.
- W4382024143 hasRelatedWork W4313443217 @default.
- W4382024143 hasVolume "28" @default.
- W4382024143 isParatext "false" @default.
- W4382024143 isRetracted "false" @default.
- W4382024143 workType "article" @default.