Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382045100> ?p ?o ?g. }
- W4382045100 abstract "Abdominal aortic aneurysm (AAA) is one of the most common diseases in vascular surgery. Endovascular aneurysm repair (EVAR) can effectively treat AAA. It is essential to accurately classify patients with AAA who need EVAR.We enrolled 266 patients with AAA who underwent EVAR. Unsupervised machine learning algorithms (UMLAs) were used to cluster subjects according to similar clinical characteristics. To verify UMLA's accuracy, the operative and postoperative results of the 2 clusters were analyzed. Finally, a prediction model was developed using binary logistic regression analysis.UMLAs could correctly classify patients based on their clinical characteristics. Patients in Cluster 1 were older, had a higher BMI, and were more likely than patients in Cluster 2 to develop pneumonia, chronic obstructive pulmonary disease, and cerebrovascular disease. The aneurysm diameter, neck angulation, diameter and angulation of bilateral common iliac arteries, and incidence of iliac artery aneurysm were significantly higher in cluster 1 patients than in cluster 2. Cluster 1 had a longer operative time, a longer length of stay in the intensive care unit and hospital, a higher medical expense, and a higher incidence of reintervention. A nomogram was established based on the BMI, neck angulation, left common iliac artery (LCIA) diameter and angulation, and right common iliac artery (RCIA) diameter and angulation. The nomogram was evaluated using receiver operating characteristic curve analysis, with an area under the curve of 0.933 (95% confidence interval, 0.902-0.963) and a C-index of 0.927.Our findings demonstrate that UMLAs can be used to rationally classify a heterogeneous cohort of patients with AAA effectively, and the analysis of postoperative variables also verified the accuracy of UMLAs. We established a prediction model for new subtypes of AAA, which can improve the quality of management of patients with AAA." @default.
- W4382045100 created "2023-06-27" @default.
- W4382045100 creator A5011249925 @default.
- W4382045100 creator A5024446968 @default.
- W4382045100 creator A5025201134 @default.
- W4382045100 creator A5033632697 @default.
- W4382045100 creator A5040580579 @default.
- W4382045100 creator A5040777629 @default.
- W4382045100 creator A5053823799 @default.
- W4382045100 creator A5062479030 @default.
- W4382045100 creator A5064970773 @default.
- W4382045100 date "2023-06-01" @default.
- W4382045100 modified "2023-09-24" @default.
- W4382045100 title "Identification of Clinical Heterogeneity and Construction of Prediction Models for Novel Subtypes in Patients with Abdominal Aortic Aneurysm: An Unsupervised Machine Learning Study" @default.
- W4382045100 cites W1778325632 @default.
- W4382045100 cites W1980441172 @default.
- W4382045100 cites W1987971958 @default.
- W4382045100 cites W1988167553 @default.
- W4382045100 cites W2019790301 @default.
- W4382045100 cites W2118556563 @default.
- W4382045100 cites W2313973862 @default.
- W4382045100 cites W2323285201 @default.
- W4382045100 cites W2508547143 @default.
- W4382045100 cites W2563231159 @default.
- W4382045100 cites W2707547624 @default.
- W4382045100 cites W2790501791 @default.
- W4382045100 cites W2802436932 @default.
- W4382045100 cites W3046738083 @default.
- W4382045100 cites W3138942317 @default.
- W4382045100 cites W3143762511 @default.
- W4382045100 cites W3178099771 @default.
- W4382045100 cites W3181119397 @default.
- W4382045100 cites W3199725447 @default.
- W4382045100 cites W4205876010 @default.
- W4382045100 doi "https://doi.org/10.1016/j.avsg.2023.06.013" @default.
- W4382045100 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37380047" @default.
- W4382045100 hasPublicationYear "2023" @default.
- W4382045100 type Work @default.
- W4382045100 citedByCount "0" @default.
- W4382045100 crossrefType "journal-article" @default.
- W4382045100 hasAuthorship W4382045100A5011249925 @default.
- W4382045100 hasAuthorship W4382045100A5024446968 @default.
- W4382045100 hasAuthorship W4382045100A5025201134 @default.
- W4382045100 hasAuthorship W4382045100A5033632697 @default.
- W4382045100 hasAuthorship W4382045100A5040580579 @default.
- W4382045100 hasAuthorship W4382045100A5040777629 @default.
- W4382045100 hasAuthorship W4382045100A5053823799 @default.
- W4382045100 hasAuthorship W4382045100A5062479030 @default.
- W4382045100 hasAuthorship W4382045100A5064970773 @default.
- W4382045100 hasBestOaLocation W43820451001 @default.
- W4382045100 hasConcept C120665830 @default.
- W4382045100 hasConcept C121332964 @default.
- W4382045100 hasConcept C126322002 @default.
- W4382045100 hasConcept C126838900 @default.
- W4382045100 hasConcept C141071460 @default.
- W4382045100 hasConcept C151956035 @default.
- W4382045100 hasConcept C164705383 @default.
- W4382045100 hasConcept C2776098176 @default.
- W4382045100 hasConcept C2776543907 @default.
- W4382045100 hasConcept C2777323849 @default.
- W4382045100 hasConcept C2779993416 @default.
- W4382045100 hasConcept C2780120127 @default.
- W4382045100 hasConcept C34626388 @default.
- W4382045100 hasConcept C44249647 @default.
- W4382045100 hasConcept C58471807 @default.
- W4382045100 hasConcept C61511704 @default.
- W4382045100 hasConcept C71924100 @default.
- W4382045100 hasConceptScore W4382045100C120665830 @default.
- W4382045100 hasConceptScore W4382045100C121332964 @default.
- W4382045100 hasConceptScore W4382045100C126322002 @default.
- W4382045100 hasConceptScore W4382045100C126838900 @default.
- W4382045100 hasConceptScore W4382045100C141071460 @default.
- W4382045100 hasConceptScore W4382045100C151956035 @default.
- W4382045100 hasConceptScore W4382045100C164705383 @default.
- W4382045100 hasConceptScore W4382045100C2776098176 @default.
- W4382045100 hasConceptScore W4382045100C2776543907 @default.
- W4382045100 hasConceptScore W4382045100C2777323849 @default.
- W4382045100 hasConceptScore W4382045100C2779993416 @default.
- W4382045100 hasConceptScore W4382045100C2780120127 @default.
- W4382045100 hasConceptScore W4382045100C34626388 @default.
- W4382045100 hasConceptScore W4382045100C44249647 @default.
- W4382045100 hasConceptScore W4382045100C58471807 @default.
- W4382045100 hasConceptScore W4382045100C61511704 @default.
- W4382045100 hasConceptScore W4382045100C71924100 @default.
- W4382045100 hasFunder F4320321001 @default.
- W4382045100 hasLocation W43820451001 @default.
- W4382045100 hasLocation W43820451002 @default.
- W4382045100 hasOpenAccess W4382045100 @default.
- W4382045100 hasPrimaryLocation W43820451001 @default.
- W4382045100 hasRelatedWork W1590973465 @default.
- W4382045100 hasRelatedWork W1982778236 @default.
- W4382045100 hasRelatedWork W1992069132 @default.
- W4382045100 hasRelatedWork W2090543750 @default.
- W4382045100 hasRelatedWork W2137190715 @default.
- W4382045100 hasRelatedWork W2186960680 @default.
- W4382045100 hasRelatedWork W2401817375 @default.
- W4382045100 hasRelatedWork W2757358183 @default.
- W4382045100 hasRelatedWork W3037686638 @default.
- W4382045100 hasRelatedWork W3014013020 @default.
- W4382045100 isParatext "false" @default.