Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382045994> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4382045994 abstract "Pancreatic ductal carcinoma patients have a really poor prognosis given its difficult early detection and the lack of early symptoms. Digital pathology is routinely used by pathologists to diagnose the disease. However, visually inspecting the tissue is a time-consuming task, which slows down the diagnostic procedure. With the advances occurred in the area of artificial intelligence, specifically with deep learning models, and the growing availability of public histology data, clinical decision support systems are being created. However, the generalization capabilities of these systems are not always tested, nor the integration of publicly available datasets for pancreatic ductal carcinoma detection (PDAC).In this work, we explored the performace of two weakly-supervised deep learning models using the two more widely available datasets with pancreatic ductal carcinoma histology images, The Cancer Genome Atlas Project (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). In order to have sufficient training data, the TCGA dataset was integrated with the Genotype-Tissue Expression (GTEx) project dataset, which contains healthy pancreatic samples.We showed how the model trained on CPTAC generalizes better than the one trained on the integrated dataset, obtaining an inter-dataset accuracy of 90.62% ± 2.32 and an outer-dataset accuracy of 92.17% when evaluated on TCGA + GTEx. Furthermore, we tested the performance on another dataset formed by tissue micro-arrays, obtaining an accuracy of 98.59%. We showed how the features learned in an integrated dataset do not differentiate between the classes, but between the datasets, noticing that a stronger normalization might be needed when creating clinical decision support systems with datasets obtained from different sources. To mitigate this effect, we proposed to train on the three available datasets, improving the detection performance and generalization capabilities of a model trained only on TCGA + GTEx and achieving a similar performance to the model trained only on CPTAC.The integration of datasets where both classes are present can mitigate the batch effect present when integrating datasets, improving the classification performance, and accurately detecting PDAC across different datasets." @default.
- W4382045994 created "2023-06-27" @default.
- W4382045994 creator A5047036875 @default.
- W4382045994 creator A5059976520 @default.
- W4382045994 creator A5083042926 @default.
- W4382045994 creator A5089029287 @default.
- W4382045994 creator A5092264510 @default.
- W4382045994 date "2023-06-26" @default.
- W4382045994 modified "2023-10-14" @default.
- W4382045994 title "Performance comparison between multi-center histopathology datasets of a weakly-supervised deep learning model for pancreatic ductal adenocarcinoma detection" @default.
- W4382045994 cites W1977653087 @default.
- W4382045994 cites W2085674426 @default.
- W4382045994 cites W2129112648 @default.
- W4382045994 cites W2133059825 @default.
- W4382045994 cites W2155320075 @default.
- W4382045994 cites W2158485828 @default.
- W4382045994 cites W2194775991 @default.
- W4382045994 cites W2304258614 @default.
- W4382045994 cites W2593461035 @default.
- W4382045994 cites W2744134415 @default.
- W4382045994 cites W2760946358 @default.
- W4382045994 cites W2804383999 @default.
- W4382045994 cites W2888598589 @default.
- W4382045994 cites W2892150561 @default.
- W4382045994 cites W2913413342 @default.
- W4382045994 cites W2921693296 @default.
- W4382045994 cites W2982445057 @default.
- W4382045994 cites W3004612364 @default.
- W4382045994 cites W3009535750 @default.
- W4382045994 cites W3021538281 @default.
- W4382045994 cites W3044996171 @default.
- W4382045994 cites W3086152929 @default.
- W4382045994 cites W3133859624 @default.
- W4382045994 cites W3135547872 @default.
- W4382045994 cites W3159302505 @default.
- W4382045994 cites W3186679119 @default.
- W4382045994 cites W3186721627 @default.
- W4382045994 cites W3199725740 @default.
- W4382045994 cites W3204312334 @default.
- W4382045994 cites W3209288009 @default.
- W4382045994 cites W3217415712 @default.
- W4382045994 cites W4224034222 @default.
- W4382045994 cites W4239422289 @default.
- W4382045994 cites W4295936483 @default.
- W4382045994 cites W4309566562 @default.
- W4382045994 doi "https://doi.org/10.1186/s40644-023-00586-3" @default.
- W4382045994 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37365659" @default.
- W4382045994 hasPublicationYear "2023" @default.
- W4382045994 type Work @default.
- W4382045994 citedByCount "0" @default.
- W4382045994 crossrefType "journal-article" @default.
- W4382045994 hasAuthorship W4382045994A5047036875 @default.
- W4382045994 hasAuthorship W4382045994A5059976520 @default.
- W4382045994 hasAuthorship W4382045994A5083042926 @default.
- W4382045994 hasAuthorship W4382045994A5089029287 @default.
- W4382045994 hasAuthorship W4382045994A5092264510 @default.
- W4382045994 hasBestOaLocation W43820459941 @default.
- W4382045994 hasConcept C108583219 @default.
- W4382045994 hasConcept C119857082 @default.
- W4382045994 hasConcept C121608353 @default.
- W4382045994 hasConcept C126322002 @default.
- W4382045994 hasConcept C154945302 @default.
- W4382045994 hasConcept C2780210213 @default.
- W4382045994 hasConcept C2992026798 @default.
- W4382045994 hasConcept C41008148 @default.
- W4382045994 hasConcept C71924100 @default.
- W4382045994 hasConceptScore W4382045994C108583219 @default.
- W4382045994 hasConceptScore W4382045994C119857082 @default.
- W4382045994 hasConceptScore W4382045994C121608353 @default.
- W4382045994 hasConceptScore W4382045994C126322002 @default.
- W4382045994 hasConceptScore W4382045994C154945302 @default.
- W4382045994 hasConceptScore W4382045994C2780210213 @default.
- W4382045994 hasConceptScore W4382045994C2992026798 @default.
- W4382045994 hasConceptScore W4382045994C41008148 @default.
- W4382045994 hasConceptScore W4382045994C71924100 @default.
- W4382045994 hasFunder F4320322930 @default.
- W4382045994 hasFunder F4320326754 @default.
- W4382045994 hasIssue "1" @default.
- W4382045994 hasLocation W43820459941 @default.
- W4382045994 hasLocation W43820459942 @default.
- W4382045994 hasOpenAccess W4382045994 @default.
- W4382045994 hasPrimaryLocation W43820459941 @default.
- W4382045994 hasRelatedWork W3014300295 @default.
- W4382045994 hasRelatedWork W3164822677 @default.
- W4382045994 hasRelatedWork W4223943233 @default.
- W4382045994 hasRelatedWork W4225161397 @default.
- W4382045994 hasRelatedWork W4250304930 @default.
- W4382045994 hasRelatedWork W4309045103 @default.
- W4382045994 hasRelatedWork W4312200629 @default.
- W4382045994 hasRelatedWork W4360585206 @default.
- W4382045994 hasRelatedWork W4364306694 @default.
- W4382045994 hasRelatedWork W4380086463 @default.
- W4382045994 hasVolume "23" @default.
- W4382045994 isParatext "false" @default.
- W4382045994 isRetracted "false" @default.
- W4382045994 workType "article" @default.