Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382048164> ?p ?o ?g. }
- W4382048164 endingPage "14719" @default.
- W4382048164 startingPage "14699" @default.
- W4382048164 abstract "Abstract Many real-world problems can be naturally formulated as discrete multi-objective optimisation (DMOO) problems. We have proposed a novel Physarum-inspired competition algorithm (PCA) to tackle these DMOO problems. Our algorithm is based on hexagonal cellular automata (CA) as a representation of problem search space and reaction–diffusion systems that control the Physarum motility. Physarum’s decision-making power and the discrete properties of CA have made our algorithm a perfectly suitable approach to solve DMOO problems. Each cell in the CA grid will be decoded as a solution (objective function) and will be regarded as a food resource to attract Physarum. The n-dimensional generalisation of the hexagonal CA grid has allowed us to extend the solving capabilities of our PCA from only 2-D to n-D optimisation problems. We have implemented a novel restart procedure to select the global Pareto frontier based on both personal experience and shared information. Extensive experimental and statistical analyses were conducted on several benchmark functions to assess the performance of our PCA against other evolutionary algorithms. As far as we know, this study is the first attempt to assess algorithms that solve DMOO problems, with a large number of benchmark functions and performance indicators. Our PCA has confirmed our assumption that individual skills of competing Physarum are more efficient in exploration and increase the diversity of the solutions. It has achieved the best performance for the Spread indicator (diversity), similar performance results compared to the strength Pareto evolutionary algorithm (SPEA2) and even outperformed other well-established genetic algorithms." @default.
- W4382048164 created "2023-06-27" @default.
- W4382048164 creator A5038065289 @default.
- W4382048164 creator A5081644845 @default.
- W4382048164 creator A5082375941 @default.
- W4382048164 date "2023-06-26" @default.
- W4382048164 modified "2023-09-23" @default.
- W4382048164 title "A novel Physarum-inspired competition algorithm for discrete multi-objective optimisation problems" @default.
- W4382048164 cites W1489264121 @default.
- W4382048164 cites W1577178998 @default.
- W4382048164 cites W1849225501 @default.
- W4382048164 cites W1890621182 @default.
- W4382048164 cites W1968836297 @default.
- W4382048164 cites W1969826591 @default.
- W4382048164 cites W1983685300 @default.
- W4382048164 cites W1984727163 @default.
- W4382048164 cites W2000825106 @default.
- W4382048164 cites W2011567632 @default.
- W4382048164 cites W2014538668 @default.
- W4382048164 cites W2015244507 @default.
- W4382048164 cites W2015712988 @default.
- W4382048164 cites W2016131362 @default.
- W4382048164 cites W2022485595 @default.
- W4382048164 cites W2027360559 @default.
- W4382048164 cites W2028946884 @default.
- W4382048164 cites W2029308618 @default.
- W4382048164 cites W2034506415 @default.
- W4382048164 cites W2040622444 @default.
- W4382048164 cites W2041282815 @default.
- W4382048164 cites W2045560222 @default.
- W4382048164 cites W2053313344 @default.
- W4382048164 cites W2056656636 @default.
- W4382048164 cites W205795208 @default.
- W4382048164 cites W2061428286 @default.
- W4382048164 cites W2081102097 @default.
- W4382048164 cites W2083135504 @default.
- W4382048164 cites W2085423687 @default.
- W4382048164 cites W2097797677 @default.
- W4382048164 cites W2098907614 @default.
- W4382048164 cites W2104017154 @default.
- W4382048164 cites W2105511939 @default.
- W4382048164 cites W2106334424 @default.
- W4382048164 cites W2116661285 @default.
- W4382048164 cites W2125502051 @default.
- W4382048164 cites W2125899728 @default.
- W4382048164 cites W2128483828 @default.
- W4382048164 cites W2129998424 @default.
- W4382048164 cites W2132354178 @default.
- W4382048164 cites W2140882991 @default.
- W4382048164 cites W2152551290 @default.
- W4382048164 cites W2156656541 @default.
- W4382048164 cites W2164335663 @default.
- W4382048164 cites W2165613966 @default.
- W4382048164 cites W2167159964 @default.
- W4382048164 cites W2194405083 @default.
- W4382048164 cites W2198098822 @default.
- W4382048164 cites W2207649084 @default.
- W4382048164 cites W2235910469 @default.
- W4382048164 cites W2398179955 @default.
- W4382048164 cites W2469713394 @default.
- W4382048164 cites W2493109494 @default.
- W4382048164 cites W2513872756 @default.
- W4382048164 cites W2533664202 @default.
- W4382048164 cites W2559459056 @default.
- W4382048164 cites W2570279358 @default.
- W4382048164 cites W2734511519 @default.
- W4382048164 cites W27400960 @default.
- W4382048164 cites W2753944351 @default.
- W4382048164 cites W2770281661 @default.
- W4382048164 cites W2792441777 @default.
- W4382048164 cites W2804879587 @default.
- W4382048164 cites W2805552432 @default.
- W4382048164 cites W2824723821 @default.
- W4382048164 cites W2889871839 @default.
- W4382048164 cites W2891202634 @default.
- W4382048164 cites W2918073423 @default.
- W4382048164 cites W2936686683 @default.
- W4382048164 cites W2944672895 @default.
- W4382048164 cites W2947967585 @default.
- W4382048164 cites W2960017311 @default.
- W4382048164 cites W3023582503 @default.
- W4382048164 cites W3023935218 @default.
- W4382048164 cites W3046207990 @default.
- W4382048164 cites W4241727697 @default.
- W4382048164 cites W4252005535 @default.
- W4382048164 cites W633428226 @default.
- W4382048164 cites W833077209 @default.
- W4382048164 cites W84428182 @default.
- W4382048164 cites W931578448 @default.
- W4382048164 doi "https://doi.org/10.1007/s00500-023-08505-1" @default.
- W4382048164 hasPublicationYear "2023" @default.
- W4382048164 type Work @default.
- W4382048164 citedByCount "0" @default.
- W4382048164 crossrefType "journal-article" @default.
- W4382048164 hasAuthorship W4382048164A5038065289 @default.
- W4382048164 hasAuthorship W4382048164A5081644845 @default.
- W4382048164 hasAuthorship W4382048164A5082375941 @default.
- W4382048164 hasBestOaLocation W43820481641 @default.