Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382050352> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4382050352 abstract "This paper focuses on maximizing the precision in binary classification problems using the <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$k$</tex> -Nearest Neighbour (k-NN) algorithm by simultaneously selecting the variables and neighbourhood size <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$(boldsymbol{k})$</tex> . The inputs to <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$k$</tex> -NN include a set of variables, the neighbourhood size and the distance metric usually selected based on data characteristics. The first two are typically decided sequentially in many studies. The current simultaneous optimization problem is formulated by a mixed-integer linear fractional program and solved by parametric algorithm. The squared Euclidean distance metric is used but the model can be adapted for other distance metrics. The methodology is tested on ten publicly available datasets. Results showed that using at least half to all variables with appropriate <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$boldsymbol{k}$</tex> value can achieve better or equally good precision. An effective set of variables jointly determined with neighbourhood size can facilitate <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$k$</tex> -NN to perform classification with high precision." @default.
- W4382050352 created "2023-06-27" @default.
- W4382050352 creator A5035624404 @default.
- W4382050352 date "2023-06-08" @default.
- W4382050352 modified "2023-09-27" @default.
- W4382050352 title "Optimizing Variable Selection and $k$ in the $k$-NN Classifier with Precision Objective" @default.
- W4382050352 cites W1520843613 @default.
- W4382050352 cites W1989728601 @default.
- W4382050352 cites W2072825576 @default.
- W4382050352 cites W2076629174 @default.
- W4382050352 cites W2100534701 @default.
- W4382050352 cites W2110440317 @default.
- W4382050352 cites W2567830010 @default.
- W4382050352 cites W2620511244 @default.
- W4382050352 cites W2623951421 @default.
- W4382050352 cites W3082813830 @default.
- W4382050352 cites W3088362669 @default.
- W4382050352 cites W3111184010 @default.
- W4382050352 cites W3198013532 @default.
- W4382050352 cites W3205327628 @default.
- W4382050352 cites W4200130654 @default.
- W4382050352 cites W4206088862 @default.
- W4382050352 cites W4283696757 @default.
- W4382050352 cites W4312252056 @default.
- W4382050352 cites W4321105684 @default.
- W4382050352 doi "https://doi.org/10.1109/hora58378.2023.10156768" @default.
- W4382050352 hasPublicationYear "2023" @default.
- W4382050352 type Work @default.
- W4382050352 citedByCount "0" @default.
- W4382050352 crossrefType "proceedings-article" @default.
- W4382050352 hasAuthorship W4382050352A5035624404 @default.
- W4382050352 hasConcept C105795698 @default.
- W4382050352 hasConcept C11413529 @default.
- W4382050352 hasConcept C114614502 @default.
- W4382050352 hasConcept C117251300 @default.
- W4382050352 hasConcept C120174047 @default.
- W4382050352 hasConcept C134306372 @default.
- W4382050352 hasConcept C154945302 @default.
- W4382050352 hasConcept C161677786 @default.
- W4382050352 hasConcept C162324750 @default.
- W4382050352 hasConcept C176217482 @default.
- W4382050352 hasConcept C21547014 @default.
- W4382050352 hasConcept C33923547 @default.
- W4382050352 hasConcept C41008148 @default.
- W4382050352 hasConcept C95623464 @default.
- W4382050352 hasConceptScore W4382050352C105795698 @default.
- W4382050352 hasConceptScore W4382050352C11413529 @default.
- W4382050352 hasConceptScore W4382050352C114614502 @default.
- W4382050352 hasConceptScore W4382050352C117251300 @default.
- W4382050352 hasConceptScore W4382050352C120174047 @default.
- W4382050352 hasConceptScore W4382050352C134306372 @default.
- W4382050352 hasConceptScore W4382050352C154945302 @default.
- W4382050352 hasConceptScore W4382050352C161677786 @default.
- W4382050352 hasConceptScore W4382050352C162324750 @default.
- W4382050352 hasConceptScore W4382050352C176217482 @default.
- W4382050352 hasConceptScore W4382050352C21547014 @default.
- W4382050352 hasConceptScore W4382050352C33923547 @default.
- W4382050352 hasConceptScore W4382050352C41008148 @default.
- W4382050352 hasConceptScore W4382050352C95623464 @default.
- W4382050352 hasLocation W43820503521 @default.
- W4382050352 hasOpenAccess W4382050352 @default.
- W4382050352 hasPrimaryLocation W43820503521 @default.
- W4382050352 hasRelatedWork W1543322965 @default.
- W4382050352 hasRelatedWork W1978042415 @default.
- W4382050352 hasRelatedWork W1997787124 @default.
- W4382050352 hasRelatedWork W2059680011 @default.
- W4382050352 hasRelatedWork W2060612181 @default.
- W4382050352 hasRelatedWork W2474469336 @default.
- W4382050352 hasRelatedWork W2908098329 @default.
- W4382050352 hasRelatedWork W2936483820 @default.
- W4382050352 hasRelatedWork W3012476946 @default.
- W4382050352 hasRelatedWork W4293488959 @default.
- W4382050352 isParatext "false" @default.
- W4382050352 isRetracted "false" @default.
- W4382050352 workType "article" @default.