Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382051217> ?p ?o ?g. }
- W4382051217 endingPage "3132" @default.
- W4382051217 startingPage "3109" @default.
- W4382051217 abstract "Avalanche activities in the snow-covered mountainous slopes are very frequent and stochastically distributed over time and geographical extents. Conventional methods of avalanche occurrence reporting in these areas are inefficient and incomplete due to inhospitable weather and inaccessible topographic conditions. This paper presents a novel framework for the detection and analysis of avalanche deposits using UAV (Unmanned Aerial Vehicle) RGB images of snow-bound avalanche-prone areas. In the first part of the proposed framework, an OBIA-CNN (Object Based Image Analysis-Convolution Neural Network) method is applied to UAV images for the detection of avalanche deposits. Initially, the OBIA-based multi-scale multi-resolution segmentation technique is used for UAV image segmentation, then the classification of these image segments was performed using a CNN classifier to detect the avalanche deposits. The CNN-based classifier was created, trained, validated, and applied to generate the class probability maps of different classes present in the image. The post-classification refinements were then applied to the detected deposits. In the second step the detailed accuracy analysis of the detected deposits based on their count, area, size similarity, and shape similarity with respect to reference deposits has been carried out to establish the suitability of the proposed method. The avalanche deposits detected using the proposed method were found in good correlation with manually delineated deposits in terms of all four accuracy criteria. The precision of the model was found 1.0, the value of recall was 0.88 and the F-1 score was 0.93. The overall object shape matching accuracy of the detected deposits was also found high (0.92). The results of the proposed deposit detection method were also compared with the classification results of Support Vector Machine (SVM), Random Forest (RF), and UNET to evaluate the performance of the method. Finally, the surface area and snow volume-based characterization of the detected deposits was performed. The proposed framework will be useful for the automated detection of avalanche deposits and their characterization for the regions of specific interest. The study suggests that regular monitoring of avalanche activities using UAV images provides a good solution for the operational monitoring of important corridors of snowbound regions." @default.
- W4382051217 created "2023-06-27" @default.
- W4382051217 creator A5022385770 @default.
- W4382051217 creator A5041706388 @default.
- W4382051217 creator A5061783914 @default.
- W4382051217 creator A5071422014 @default.
- W4382051217 creator A5092266160 @default.
- W4382051217 date "2023-10-01" @default.
- W4382051217 modified "2023-10-16" @default.
- W4382051217 title "Combining OBIA, CNN, and UAV photogrammetry for automated avalanche deposit detection and characterization" @default.
- W4382051217 cites W1703305297 @default.
- W4382051217 cites W1901129140 @default.
- W4382051217 cites W1982554301 @default.
- W4382051217 cites W1984792953 @default.
- W4382051217 cites W1993206956 @default.
- W4382051217 cites W2023794042 @default.
- W4382051217 cites W2061240006 @default.
- W4382051217 cites W2070805017 @default.
- W4382051217 cites W2083776676 @default.
- W4382051217 cites W2095028777 @default.
- W4382051217 cites W2103079830 @default.
- W4382051217 cites W2121472011 @default.
- W4382051217 cites W2131130112 @default.
- W4382051217 cites W2208102914 @default.
- W4382051217 cites W2412588858 @default.
- W4382051217 cites W2548355233 @default.
- W4382051217 cites W2606239510 @default.
- W4382051217 cites W2727808351 @default.
- W4382051217 cites W2770877241 @default.
- W4382051217 cites W2793288240 @default.
- W4382051217 cites W2801774111 @default.
- W4382051217 cites W2911964244 @default.
- W4382051217 cites W2940726923 @default.
- W4382051217 cites W2954081578 @default.
- W4382051217 cites W2977796009 @default.
- W4382051217 cites W2992176590 @default.
- W4382051217 cites W3012020367 @default.
- W4382051217 cites W3061415658 @default.
- W4382051217 cites W3091920675 @default.
- W4382051217 cites W3101283671 @default.
- W4382051217 cites W3173737780 @default.
- W4382051217 cites W4239510810 @default.
- W4382051217 cites W4281779568 @default.
- W4382051217 cites W4296645314 @default.
- W4382051217 doi "https://doi.org/10.1016/j.asr.2023.06.033" @default.
- W4382051217 hasPublicationYear "2023" @default.
- W4382051217 type Work @default.
- W4382051217 citedByCount "0" @default.
- W4382051217 crossrefType "journal-article" @default.
- W4382051217 hasAuthorship W4382051217A5022385770 @default.
- W4382051217 hasAuthorship W4382051217A5041706388 @default.
- W4382051217 hasAuthorship W4382051217A5061783914 @default.
- W4382051217 hasAuthorship W4382051217A5071422014 @default.
- W4382051217 hasAuthorship W4382051217A5092266160 @default.
- W4382051217 hasConcept C108583219 @default.
- W4382051217 hasConcept C114793014 @default.
- W4382051217 hasConcept C117455697 @default.
- W4382051217 hasConcept C127313418 @default.
- W4382051217 hasConcept C134306372 @default.
- W4382051217 hasConcept C153180895 @default.
- W4382051217 hasConcept C154945302 @default.
- W4382051217 hasConcept C162494671 @default.
- W4382051217 hasConcept C169258074 @default.
- W4382051217 hasConcept C197046000 @default.
- W4382051217 hasConcept C26546657 @default.
- W4382051217 hasConcept C31972630 @default.
- W4382051217 hasConcept C33923547 @default.
- W4382051217 hasConcept C40636538 @default.
- W4382051217 hasConcept C41008148 @default.
- W4382051217 hasConcept C62649853 @default.
- W4382051217 hasConcept C81363708 @default.
- W4382051217 hasConcept C82990744 @default.
- W4382051217 hasConcept C89600930 @default.
- W4382051217 hasConcept C95623464 @default.
- W4382051217 hasConceptScore W4382051217C108583219 @default.
- W4382051217 hasConceptScore W4382051217C114793014 @default.
- W4382051217 hasConceptScore W4382051217C117455697 @default.
- W4382051217 hasConceptScore W4382051217C127313418 @default.
- W4382051217 hasConceptScore W4382051217C134306372 @default.
- W4382051217 hasConceptScore W4382051217C153180895 @default.
- W4382051217 hasConceptScore W4382051217C154945302 @default.
- W4382051217 hasConceptScore W4382051217C162494671 @default.
- W4382051217 hasConceptScore W4382051217C169258074 @default.
- W4382051217 hasConceptScore W4382051217C197046000 @default.
- W4382051217 hasConceptScore W4382051217C26546657 @default.
- W4382051217 hasConceptScore W4382051217C31972630 @default.
- W4382051217 hasConceptScore W4382051217C33923547 @default.
- W4382051217 hasConceptScore W4382051217C40636538 @default.
- W4382051217 hasConceptScore W4382051217C41008148 @default.
- W4382051217 hasConceptScore W4382051217C62649853 @default.
- W4382051217 hasConceptScore W4382051217C81363708 @default.
- W4382051217 hasConceptScore W4382051217C82990744 @default.
- W4382051217 hasConceptScore W4382051217C89600930 @default.
- W4382051217 hasConceptScore W4382051217C95623464 @default.
- W4382051217 hasIssue "8" @default.
- W4382051217 hasLocation W43820512171 @default.
- W4382051217 hasOpenAccess W4382051217 @default.
- W4382051217 hasPrimaryLocation W43820512171 @default.