Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382051273> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4382051273 endingPage "107218" @default.
- W4382051273 startingPage "107218" @default.
- W4382051273 abstract "Accurate gland segmentation is critical in determining adenocarcinoma. Automatic gland segmentation methods currently suffer from challenges such as less accurate edge segmentation, easy mis-segmentation, and incomplete segmentation. To solve these problems, this paper proposes a novel gland segmentation network Dual-branch Attention-guided Refinement and Multi-scale Features Fusion U-Net (DARMF-UNet), which fuses multi-scale features using deep supervision. At the first three layers of feature concatenation, a Coordinate Parallel Attention (CPA) is proposed to guide the network to focus on the key regions. A Dense Atrous Convolution (DAC) block is used in the fourth layer of feature concatenation to perform multi-scale features extraction and obtain global information. A hybrid loss function is adopted to calculate the loss of each segmentation result of the network to achieve deep supervision and improve the accuracy of segmentation. Finally, the segmentation results at different scales in each part of the network are fused to obtain the final gland segmentation result. The experimental results on the gland datasets Warwick-QU and Crag show that the network improves in terms of the evaluation metrics of F1 Score, Object Dice, Object Hausdorff, and the segmentation effect is better than the state-of-the-art network models." @default.
- W4382051273 created "2023-06-27" @default.
- W4382051273 creator A5009527891 @default.
- W4382051273 creator A5028432371 @default.
- W4382051273 creator A5050033881 @default.
- W4382051273 creator A5073184141 @default.
- W4382051273 creator A5078033538 @default.
- W4382051273 date "2023-09-01" @default.
- W4382051273 modified "2023-10-16" @default.
- W4382051273 title "DARMF-UNet: A dual-branch attention-guided refinement network with multi-scale features fusion U-Net for gland segmentation" @default.
- W4382051273 cites W1950315773 @default.
- W4382051273 cites W2040568291 @default.
- W4382051273 cites W2160754664 @default.
- W4382051273 cites W2173930701 @default.
- W4382051273 cites W2288892845 @default.
- W4382051273 cites W2412782625 @default.
- W4382051273 cites W2769999077 @default.
- W4382051273 cites W2798643036 @default.
- W4382051273 cites W2805735218 @default.
- W4382051273 cites W2928133111 @default.
- W4382051273 cites W2946027615 @default.
- W4382051273 cites W2996290406 @default.
- W4382051273 cites W3049194333 @default.
- W4382051273 cites W3090974769 @default.
- W4382051273 cites W3103010481 @default.
- W4382051273 cites W4310595042 @default.
- W4382051273 cites W4319216049 @default.
- W4382051273 doi "https://doi.org/10.1016/j.compbiomed.2023.107218" @default.
- W4382051273 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37393784" @default.
- W4382051273 hasPublicationYear "2023" @default.
- W4382051273 type Work @default.
- W4382051273 citedByCount "0" @default.
- W4382051273 crossrefType "journal-article" @default.
- W4382051273 hasAuthorship W4382051273A5009527891 @default.
- W4382051273 hasAuthorship W4382051273A5028432371 @default.
- W4382051273 hasAuthorship W4382051273A5050033881 @default.
- W4382051273 hasAuthorship W4382051273A5073184141 @default.
- W4382051273 hasAuthorship W4382051273A5078033538 @default.
- W4382051273 hasConcept C114614502 @default.
- W4382051273 hasConcept C124504099 @default.
- W4382051273 hasConcept C138885662 @default.
- W4382051273 hasConcept C153180895 @default.
- W4382051273 hasConcept C154945302 @default.
- W4382051273 hasConcept C2524010 @default.
- W4382051273 hasConcept C25694479 @default.
- W4382051273 hasConcept C2776401178 @default.
- W4382051273 hasConcept C2777210771 @default.
- W4382051273 hasConcept C31972630 @default.
- W4382051273 hasConcept C33923547 @default.
- W4382051273 hasConcept C41008148 @default.
- W4382051273 hasConcept C41895202 @default.
- W4382051273 hasConcept C65885262 @default.
- W4382051273 hasConcept C87619178 @default.
- W4382051273 hasConcept C89600930 @default.
- W4382051273 hasConceptScore W4382051273C114614502 @default.
- W4382051273 hasConceptScore W4382051273C124504099 @default.
- W4382051273 hasConceptScore W4382051273C138885662 @default.
- W4382051273 hasConceptScore W4382051273C153180895 @default.
- W4382051273 hasConceptScore W4382051273C154945302 @default.
- W4382051273 hasConceptScore W4382051273C2524010 @default.
- W4382051273 hasConceptScore W4382051273C25694479 @default.
- W4382051273 hasConceptScore W4382051273C2776401178 @default.
- W4382051273 hasConceptScore W4382051273C2777210771 @default.
- W4382051273 hasConceptScore W4382051273C31972630 @default.
- W4382051273 hasConceptScore W4382051273C33923547 @default.
- W4382051273 hasConceptScore W4382051273C41008148 @default.
- W4382051273 hasConceptScore W4382051273C41895202 @default.
- W4382051273 hasConceptScore W4382051273C65885262 @default.
- W4382051273 hasConceptScore W4382051273C87619178 @default.
- W4382051273 hasConceptScore W4382051273C89600930 @default.
- W4382051273 hasFunder F4320321001 @default.
- W4382051273 hasLocation W43820512731 @default.
- W4382051273 hasLocation W43820512732 @default.
- W4382051273 hasOpenAccess W4382051273 @default.
- W4382051273 hasPrimaryLocation W43820512731 @default.
- W4382051273 hasRelatedWork W134976887 @default.
- W4382051273 hasRelatedWork W1669643531 @default.
- W4382051273 hasRelatedWork W1982826852 @default.
- W4382051273 hasRelatedWork W2021143974 @default.
- W4382051273 hasRelatedWork W2274529912 @default.
- W4382051273 hasRelatedWork W2384989255 @default.
- W4382051273 hasRelatedWork W2517104666 @default.
- W4382051273 hasRelatedWork W2549936415 @default.
- W4382051273 hasRelatedWork W2566648451 @default.
- W4382051273 hasRelatedWork W1967061043 @default.
- W4382051273 hasVolume "163" @default.
- W4382051273 isParatext "false" @default.
- W4382051273 isRetracted "false" @default.
- W4382051273 workType "article" @default.