Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382052561> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4382052561 abstract "Chronic kidney disease is a critical and dangerous medical condition that can lead to many problems if it is not treated properly or detected at an early stage. It is a medical condition that can also lead to kidney failure. The waste and extra fluids present in the blood are removed by the kidneys and then passed from body through urine. The body may accumulate hazardous amounts of electrolytes, fluids, and waste if you reach the last stages of chronic renal disease. Because kidney failure does not initially manifest any symptoms, the beginning date may not be identified, and the patient's sickness may not even be recognized. We must identify the patients with chronic kidney disease early so that treatment can begin in order to prevent or slower the advancement of the disease and prevent the emergence of other related issues. To overcome this situation, we have developed a system to detect the disease using preprocessing of data, feature selection, and machine learning algorithms for which Logistic Regression, Extreme Gradient Boosting, Random Forest, Support Vector Machine, Decision Tree, and Naive Bayes are used. The accuracy of these algorithms is analyzed and compared to predict the disease precisely. The algorithm which has provided the best results is implemented for the disease prediction. We have enhanced the performance and effectiveness of the model by removing unnecessary attributes from the dataset and only gathering those that are most beneficial." @default.
- W4382052561 created "2023-06-27" @default.
- W4382052561 creator A5023449030 @default.
- W4382052561 creator A5026513768 @default.
- W4382052561 creator A5063009011 @default.
- W4382052561 creator A5072398278 @default.
- W4382052561 creator A5092266491 @default.
- W4382052561 creator A5092266492 @default.
- W4382052561 date "2023-05-05" @default.
- W4382052561 modified "2023-09-27" @default.
- W4382052561 title "Chronic Kidney Disease Detection Using Machine Learning Approach" @default.
- W4382052561 cites W2136423328 @default.
- W4382052561 cites W2164249826 @default.
- W4382052561 cites W2174298144 @default.
- W4382052561 cites W2239135493 @default.
- W4382052561 cites W2442574061 @default.
- W4382052561 cites W2511377368 @default.
- W4382052561 cites W2779895460 @default.
- W4382052561 cites W2903314155 @default.
- W4382052561 cites W2942715609 @default.
- W4382052561 cites W2968513998 @default.
- W4382052561 cites W2972606465 @default.
- W4382052561 cites W3022622375 @default.
- W4382052561 cites W3094076281 @default.
- W4382052561 cites W3117160760 @default.
- W4382052561 cites W3172921504 @default.
- W4382052561 cites W3215855955 @default.
- W4382052561 doi "https://doi.org/10.1109/vitecon58111.2023.10157496" @default.
- W4382052561 hasPublicationYear "2023" @default.
- W4382052561 type Work @default.
- W4382052561 citedByCount "0" @default.
- W4382052561 crossrefType "proceedings-article" @default.
- W4382052561 hasAuthorship W4382052561A5023449030 @default.
- W4382052561 hasAuthorship W4382052561A5026513768 @default.
- W4382052561 hasAuthorship W4382052561A5063009011 @default.
- W4382052561 hasAuthorship W4382052561A5072398278 @default.
- W4382052561 hasAuthorship W4382052561A5092266491 @default.
- W4382052561 hasAuthorship W4382052561A5092266492 @default.
- W4382052561 hasConcept C119857082 @default.
- W4382052561 hasConcept C12267149 @default.
- W4382052561 hasConcept C124101348 @default.
- W4382052561 hasConcept C126322002 @default.
- W4382052561 hasConcept C148483581 @default.
- W4382052561 hasConcept C151956035 @default.
- W4382052561 hasConcept C154945302 @default.
- W4382052561 hasConcept C169258074 @default.
- W4382052561 hasConcept C177713679 @default.
- W4382052561 hasConcept C2778653478 @default.
- W4382052561 hasConcept C2779134260 @default.
- W4382052561 hasConcept C34626388 @default.
- W4382052561 hasConcept C34736171 @default.
- W4382052561 hasConcept C41008148 @default.
- W4382052561 hasConcept C46686674 @default.
- W4382052561 hasConcept C52001869 @default.
- W4382052561 hasConcept C71924100 @default.
- W4382052561 hasConcept C84525736 @default.
- W4382052561 hasConceptScore W4382052561C119857082 @default.
- W4382052561 hasConceptScore W4382052561C12267149 @default.
- W4382052561 hasConceptScore W4382052561C124101348 @default.
- W4382052561 hasConceptScore W4382052561C126322002 @default.
- W4382052561 hasConceptScore W4382052561C148483581 @default.
- W4382052561 hasConceptScore W4382052561C151956035 @default.
- W4382052561 hasConceptScore W4382052561C154945302 @default.
- W4382052561 hasConceptScore W4382052561C169258074 @default.
- W4382052561 hasConceptScore W4382052561C177713679 @default.
- W4382052561 hasConceptScore W4382052561C2778653478 @default.
- W4382052561 hasConceptScore W4382052561C2779134260 @default.
- W4382052561 hasConceptScore W4382052561C34626388 @default.
- W4382052561 hasConceptScore W4382052561C34736171 @default.
- W4382052561 hasConceptScore W4382052561C41008148 @default.
- W4382052561 hasConceptScore W4382052561C46686674 @default.
- W4382052561 hasConceptScore W4382052561C52001869 @default.
- W4382052561 hasConceptScore W4382052561C71924100 @default.
- W4382052561 hasConceptScore W4382052561C84525736 @default.
- W4382052561 hasLocation W43820525611 @default.
- W4382052561 hasOpenAccess W4382052561 @default.
- W4382052561 hasPrimaryLocation W43820525611 @default.
- W4382052561 hasRelatedWork W3127425528 @default.
- W4382052561 hasRelatedWork W3199032340 @default.
- W4382052561 hasRelatedWork W3204641204 @default.
- W4382052561 hasRelatedWork W4200057378 @default.
- W4382052561 hasRelatedWork W4246246790 @default.
- W4382052561 hasRelatedWork W4281846282 @default.
- W4382052561 hasRelatedWork W4283016678 @default.
- W4382052561 hasRelatedWork W4292651891 @default.
- W4382052561 hasRelatedWork W4293069612 @default.
- W4382052561 hasRelatedWork W4376059206 @default.
- W4382052561 isParatext "false" @default.
- W4382052561 isRetracted "false" @default.
- W4382052561 workType "article" @default.