Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382060298> ?p ?o ?g. }
- W4382060298 endingPage "6216" @default.
- W4382060298 startingPage "6216" @default.
- W4382060298 abstract "In this study, machine learning models were implemented to predict the classification of coastal waters in the region of Eastern Macedonia and Thrace (EMT) concerning Escherichia coli (E. coli) concentration and weather variables in the framework of the Directive 2006/7/EC. Six sampling stations of EMT, located on beaches of the regional units of Kavala, Xanthi, Rhodopi, Evros, Thasos and Samothraki, were selected. All 1039 samples were collected from May to September within a 14-year follow-up period (2009–2021). The weather parameters were acquired from nearby meteorological stations. The samples were analysed according to the ISO 9308-1 for the detection and the enumeration of E. coli. The vast majority of the samples fall into category 1 (Excellent), which is a mark of the high quality of the coastal waters of EMT. The experimental results disclose, additionally, that two-class classifiers, namely Decision Forest, Decision Jungle and Boosted Decision Tree, achieved high Accuracy scores over 99%. In addition, comparing our performance metrics with those of other researchers, diversity is observed in using algorithms for water quality prediction, with algorithms such as Decision Tree, Artificial Neural Networks and Bayesian Belief Networks demonstrating satisfactory results. Machine learning approaches can provide critical information about the dynamic of E. coli contamination and, concurrently, consider the meteorological parameters for coastal waters classification." @default.
- W4382060298 created "2023-06-27" @default.
- W4382060298 creator A5000576614 @default.
- W4382060298 creator A5044756549 @default.
- W4382060298 creator A5050652316 @default.
- W4382060298 creator A5061359386 @default.
- W4382060298 creator A5064938473 @default.
- W4382060298 creator A5071642148 @default.
- W4382060298 creator A5075094506 @default.
- W4382060298 creator A5082601696 @default.
- W4382060298 creator A5092267711 @default.
- W4382060298 creator A5092267712 @default.
- W4382060298 creator A5092267713 @default.
- W4382060298 date "2023-06-24" @default.
- W4382060298 modified "2023-09-25" @default.
- W4382060298 title "Coastal Water Quality Modelling Using E. coli, Meteorological Parameters and Machine Learning Algorithms" @default.
- W4382060298 cites W1538653679 @default.
- W4382060298 cites W1546388843 @default.
- W4382060298 cites W1983164986 @default.
- W4382060298 cites W1983444977 @default.
- W4382060298 cites W1991710050 @default.
- W4382060298 cites W1997069189 @default.
- W4382060298 cites W1997211507 @default.
- W4382060298 cites W2024930580 @default.
- W4382060298 cites W2031609549 @default.
- W4382060298 cites W2047273464 @default.
- W4382060298 cites W2050837360 @default.
- W4382060298 cites W2055922327 @default.
- W4382060298 cites W2061124054 @default.
- W4382060298 cites W2071163351 @default.
- W4382060298 cites W2076052026 @default.
- W4382060298 cites W2100564877 @default.
- W4382060298 cites W2103026230 @default.
- W4382060298 cites W2138503715 @default.
- W4382060298 cites W2142922812 @default.
- W4382060298 cites W2149409488 @default.
- W4382060298 cites W2156262706 @default.
- W4382060298 cites W2161388682 @default.
- W4382060298 cites W2216251838 @default.
- W4382060298 cites W2598162442 @default.
- W4382060298 cites W2802483030 @default.
- W4382060298 cites W2804550730 @default.
- W4382060298 cites W2897120700 @default.
- W4382060298 cites W2898068306 @default.
- W4382060298 cites W2930669685 @default.
- W4382060298 cites W2948479564 @default.
- W4382060298 cites W2981586399 @default.
- W4382060298 cites W2990381466 @default.
- W4382060298 cites W3003042459 @default.
- W4382060298 cites W3005915581 @default.
- W4382060298 cites W3006326026 @default.
- W4382060298 cites W3022517060 @default.
- W4382060298 cites W3026094172 @default.
- W4382060298 cites W3090868346 @default.
- W4382060298 cites W3091951041 @default.
- W4382060298 cites W3093246649 @default.
- W4382060298 cites W3102793088 @default.
- W4382060298 cites W3111394468 @default.
- W4382060298 cites W3121158412 @default.
- W4382060298 cites W3132868549 @default.
- W4382060298 cites W3133646808 @default.
- W4382060298 cites W3153679951 @default.
- W4382060298 cites W3157438980 @default.
- W4382060298 cites W3160863196 @default.
- W4382060298 cites W3175134873 @default.
- W4382060298 cites W3177823658 @default.
- W4382060298 cites W3193882828 @default.
- W4382060298 cites W3196592535 @default.
- W4382060298 cites W3198437183 @default.
- W4382060298 cites W3200130490 @default.
- W4382060298 cites W3200542697 @default.
- W4382060298 cites W3204942171 @default.
- W4382060298 cites W3212657826 @default.
- W4382060298 cites W4200488677 @default.
- W4382060298 cites W4205382150 @default.
- W4382060298 cites W4205661873 @default.
- W4382060298 cites W4210525333 @default.
- W4382060298 cites W4224235856 @default.
- W4382060298 cites W4224275870 @default.
- W4382060298 cites W4280498832 @default.
- W4382060298 cites W4280542118 @default.
- W4382060298 cites W4280596435 @default.
- W4382060298 cites W4281691413 @default.
- W4382060298 cites W4282920686 @default.
- W4382060298 cites W4283459154 @default.
- W4382060298 cites W4283698139 @default.
- W4382060298 cites W4285045833 @default.
- W4382060298 cites W4293274943 @default.
- W4382060298 cites W4317425328 @default.
- W4382060298 cites W4317434425 @default.
- W4382060298 cites W4317743498 @default.
- W4382060298 cites W4366765216 @default.
- W4382060298 cites W61851215 @default.
- W4382060298 doi "https://doi.org/10.3390/ijerph20136216" @default.
- W4382060298 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37444064" @default.
- W4382060298 hasPublicationYear "2023" @default.
- W4382060298 type Work @default.
- W4382060298 citedByCount "0" @default.