Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382073203> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W4382073203 abstract "Abstract Geostatistical models are widely used to analyze malaria data, and obtain spatial predictions at un-sampled locations based on the First Law of Geography (close things in space are more similar than distant things). When environmental covariates affect not only the mean of the underlying process under investigation but also its covariance structure, stationary models for spatial prediction are questionable. In this paper, we illustrate how to incorporate spatially referenced environmental risk-factors into the covariance function to model non-stationary patterns of malaria risk. Specifically, we demonstrate the suggested modelling framework with a case study of malaria prevalence in Mozambique where we compare a non-stationary model with dependence structure governed by precipitation to the standard stationary model. Results reveal that non-stationary geostatistical modeling approaches are more useful to model the non-stationary patterns of malaria. Further the predication malaria risk map based on the non-stationary modeling approach show that in many part of the country (especially in the eastern part) malaria prevalence is above 30%. The demonstrated non-stationary modeling approach will play a great role for malaria elimination." @default.
- W4382073203 created "2023-06-27" @default.
- W4382073203 creator A5017454897 @default.
- W4382073203 creator A5069637840 @default.
- W4382073203 date "2023-06-26" @default.
- W4382073203 modified "2023-09-24" @default.
- W4382073203 title "A new way of analyzing malaria data: A non-stationary geostatistical modeling approach" @default.
- W4382073203 doi "https://doi.org/10.21203/rs.3.rs-3100450/v1" @default.
- W4382073203 hasPublicationYear "2023" @default.
- W4382073203 type Work @default.
- W4382073203 citedByCount "0" @default.
- W4382073203 crossrefType "posted-content" @default.
- W4382073203 hasAuthorship W4382073203A5017454897 @default.
- W4382073203 hasAuthorship W4382073203A5069637840 @default.
- W4382073203 hasBestOaLocation W43820732031 @default.
- W4382073203 hasConcept C105795698 @default.
- W4382073203 hasConcept C119043178 @default.
- W4382073203 hasConcept C149782125 @default.
- W4382073203 hasConcept C178650346 @default.
- W4382073203 hasConcept C203014093 @default.
- W4382073203 hasConcept C205649164 @default.
- W4382073203 hasConcept C2778048844 @default.
- W4382073203 hasConcept C33923547 @default.
- W4382073203 hasConcept C41008148 @default.
- W4382073203 hasConcept C86803240 @default.
- W4382073203 hasConceptScore W4382073203C105795698 @default.
- W4382073203 hasConceptScore W4382073203C119043178 @default.
- W4382073203 hasConceptScore W4382073203C149782125 @default.
- W4382073203 hasConceptScore W4382073203C178650346 @default.
- W4382073203 hasConceptScore W4382073203C203014093 @default.
- W4382073203 hasConceptScore W4382073203C205649164 @default.
- W4382073203 hasConceptScore W4382073203C2778048844 @default.
- W4382073203 hasConceptScore W4382073203C33923547 @default.
- W4382073203 hasConceptScore W4382073203C41008148 @default.
- W4382073203 hasConceptScore W4382073203C86803240 @default.
- W4382073203 hasLocation W43820732031 @default.
- W4382073203 hasOpenAccess W4382073203 @default.
- W4382073203 hasPrimaryLocation W43820732031 @default.
- W4382073203 hasRelatedWork W1844060830 @default.
- W4382073203 hasRelatedWork W2005917284 @default.
- W4382073203 hasRelatedWork W2022232878 @default.
- W4382073203 hasRelatedWork W2052172806 @default.
- W4382073203 hasRelatedWork W2052891208 @default.
- W4382073203 hasRelatedWork W2069900298 @default.
- W4382073203 hasRelatedWork W2114467513 @default.
- W4382073203 hasRelatedWork W2186095101 @default.
- W4382073203 hasRelatedWork W2587424010 @default.
- W4382073203 hasRelatedWork W78271060 @default.
- W4382073203 isParatext "false" @default.
- W4382073203 isRetracted "false" @default.
- W4382073203 workType "article" @default.